aaaaaaaaaaaarghhhhhhhhhhh

This commit is contained in:
Martin Kennedy 2025-02-17 23:40:38 -05:00
parent 44878154c8
commit 2d081e5ccb
8 changed files with 204 additions and 11 deletions

215
Lab1.tex
View File

@ -179,6 +179,53 @@ We will reference these three derivations in our ``Experimental Results'' sectio
\section{Numerical Modeling Results}
For the numerical modeling, I opted to simulate signals types
~\ref{type:ac} (sinusoidal AC about 0V) and ~\ref{type:squarewave}
(square wave).
In LTSpice, I assembled the circuit shown in Figure
~\ref{fig:ac_2v_100hz_diag}; for the first signal, I specified a
transient simulation from 0.1s to 0.2s:
\begin{figure}[h]
\caption{Our first sinusoidal signal circuit, simulated in LTSpice}
\label{fig:ac_2v_100hz_diag}
\centering
\includegraphics[width=0.6\textwidth]{lab1_ac_2v_100hz_diag}
\end{figure}
I then used Ctrl+click on the signal label \texttt{V(n001)} to pull up
the Waveform dialog shown in Figure ~\ref{fig:ac_2v_100hz_num},
yielding a numerically-derived RMS voltage:
\begin{figure}[h!]
\caption{This LTSpice dialog shows us measurements of our interval; of most interest is RMS}
\label{fig:ac_2v_100hz_num}
\centering
\includegraphics[width=0.3\textwidth]{lab1_ac_2v_100hz_num}
\end{figure}
I had to adjust the size length of the transient simulation to get an
easily-viewable result.
For the square-wave values: I switched from the \texttt{SINE} command
to \texttt{PULSE}; this command requires a rise-time and fall-time,
which are set as low as possible to mimic a true square-wave; in
addition, we specify the duty cycle and frequency indirectly, instead
by specifying the on time and period, as seen in Figure
~\ref{fig:pulse_ltspice}.
\begin{figure}[h]
\caption{The LTSpice \texttt{PULSE} command menu}
\label{fig:pulse_ltspice}
\centering
\includegraphics[width=\textwidth]{lab1_ltspice_pulse}
\end{figure}
The results of the numerical modeling are compiled below, in Tables
~\ref{table:comparison_ac} and ~\ref{table:comparison_squarewave}.
\section{Experimental Results}
\begin{figure}[h]
@ -217,15 +264,31 @@ Equation ~\ref{deriv:ac}:
\end{equation*}
\begin{longtable}[]{@{}lllllllll@{}}
\toprule
\endhead
\bottomrule
\endlastfoot
Set Mag. & Set Freq. & Read Mag. & Read Period & Calc. Freq. & Calc. RMS & Meas. RMS \\
2V & 100 Hz & 2.10 V & 9.994 ms & 100.1 Hz & 1.48 V & 1.4236 V \\
2V & 50 kHz & 2.05 V & 19.95 us & 50.13 kHz & 1.45 V & 1.4112 V \\
5V & 100 Hz & 5.11 V & 10.01 ms & 99.90 Hz & 3.61 V & 3.5522 V \\
5V & 50 kHz & 5.11 V & 20.01 us & 49.98 kHz & 3.61 V & 3.5451 V \\
\toprule
\caption {Voltage measurements and period for ~\ref{type:ac} (sinusoidal AC)}
\endhead
\bottomrule
\endlastfoot
Set Mag. & Set Freq. & Read Mag. & Read Period & Calc. Freq. & Calc. RMS & Meas. RMS \\
2V & 100 Hz & 2.10 V & 9.994 ms & 100.1 Hz & 1.48 V & 1.4236 V \\
2V & 50 kHz & 2.05 V & 19.95 us & 50.13 kHz & 1.45 V & 1.4112 V \\
5V & 100 Hz & 5.11 V & 10.01 ms & 99.90 Hz & 3.61 V & 3.5522 V \\
5V & 50 kHz & 5.11 V & 20.01 us & 49.98 kHz & 3.61 V & 3.5451 V \\
\end{longtable}
Comparing the calculated and measured RMS values:
\begin{longtable}[]{@{}llll@{}}
\toprule\noalign{}
\caption {RMS Error for ~\ref{type:ac} (sinusoidal AC)}
\endhead
\bottomrule\noalign{}
\endlastfoot
& Calc. RMS & Meas. RMS & Error \% \\
Case 1 & 1.48 V & 1.4236 V & 3.81 \% \\
Case 2 & 1.45 V & 1.4112 V & 2.68 \% \\
Case 3 & 3.61 V & 3.5522 V & 1.60 \% \\
Case 4 & 3.61 V & 3.5451 V & 1.80 \% \\
\end{longtable}
\subsection{Experiment ~\ref{type:acoffset} (sinusoidal AC with DC offset)}
@ -238,10 +301,9 @@ Equation ~\ref{deriv:acoffset}:
V_{\ref{type:acoffset}RMS} = \sqrt{\frac{V_{m}^{2}}{2} + V_{b}^{2}}
\end{equation*}
TODO NOTE ERROR could not check dc offset voltage bias
\begin{longtable}[]{@{}lllllllll@{}}
\toprule
\caption {Voltage measurements and period for ~\ref{type:acoffset} (sinusoidal AC with DC offset)}
\endhead
\bottomrule
\endlastfoot
@ -252,6 +314,21 @@ TODO NOTE ERROR could not check dc offset voltage bias
5V & 100 Hz & -5V & 5.20 V & 9.997 ms & 100.0 Hz & 6.21 V & 6.16 V \\
\end{longtable}
Comparing the calculated and measured RMS values:
\begin{longtable}[]{@{}llll@{}}
\toprule\noalign{}
\caption {RMS Error for ~\ref{type:acoffset} (sinusoidal AC with DC offset)}
\endhead
\bottomrule\noalign{}
\endlastfoot
& Calc. RMS & Meas. RMS & Error \% \\
Case 1 & 2.50 V & 2.44 V & 2.40 \% \\
Case 2 & 5.22 V & 5.19 V & 0.57 \% \\
Case 3 & 4.15 V & 4.05 V & 2.41 \% \\
Case 4 & 6.21 V & 6.16 V & 0.81 \% \\
\end{longtable}
\subsection{Experiment ~\ref{type:squarewave} (square wave)}
Given a read period of $T$ seconds, we calculate the frequency as
@ -261,6 +338,7 @@ magnitude.
\begin{longtable}[]{@{}lllllllll@{}}
\toprule
\caption {Voltage measurements and period for ~\ref{type:squarewave} (square wave)}
\endhead
\bottomrule
\endlastfoot
@ -271,9 +349,124 @@ magnitude.
5V & 100 Hz & 50\% & 5.20 V & 9.999ms & 100.0 Hz & 5.20 V & 5.01 V \\
\end{longtable}
Comparing the calculated and measured RMS values:
\begin{longtable}[]{@{}llll@{}}
\toprule\noalign{}
\caption {RMS Error for ~\ref{type:squarewave} (square wave)}
\endhead
\bottomrule\noalign{}
\endlastfoot
& Calc. RMS & Meas. RMS & Error \% \\
Case 1 & 2.11 V & 2.02 V & 4.27 \% \\
Case 2 & 2.13 V & 2.01 V & 5.63 \% \\
Case 3 & 5.20 V & 5.04 V & 3.08 \% \\
Case 4 & 5.20 V & 5.01 V & 3.65 \% \\
\end{longtable}
Notably, this is the first time we have a >5\% error value; we will
review this item in TODO WHERE?
\section{Data Comparison}
Here, I publish the modeling results for ~\ref{type:ac} (sinusoidal AC
about 0V).
\begin{longtable}[]{@{}lllll@{}}
\toprule\noalign{}
\caption {RMS Voltage comparison for ~\ref{type:ac} (sinusoidal AC)}
\label {table:comparison_ac}
\endhead
\bottomrule\noalign{}
\endlastfoot
RMS & Case 1 & Case 2 & Case 3 & Case 4 \\
Analytic (A) & 1.48 V & 1.45 V & 3.61 V & 3.61 V \\
Numerical (N) & 1.4125 V & 1.4124 V & 3.5311 V & 3.5311 V \\
Experimental (E) & 1.4236 V & 1.4112 V & 3.5522 V & 3.5451 V \\
A-N error & 4.78 \% & 2.66 \% & 2.23 \% & 2.23 \% \\
A-E error & 3.96 \% & 2.75 \% & 1.63 \% & 1.83 \% \\
N-E error & 0.78 \% & 0.09 \% & 0.59 \% & 0.39 \% \\
\end{longtable}
Next, I publish the modeling results for ~\ref{type:squarewave}
(square-wave AC).
\begin{longtable}[]{@{}lllll@{}}
\toprule\noalign{}
\caption {RMS Voltage comparison for ~\ref{type:squarewave} (square-wave AC)}
\label {table:comparison_squarewave}
\endhead
\bottomrule\noalign{}
\endlastfoot
RMS & Case 1 & Case 2 & Case 3 & Case 4 \\
Analytic (A) & 2.11 V & 2.13 V & 5.20 V & 5.01 V \\
Numerical (N) & 1.9999 V & 1.9999 V & 4.9997 V & 4.9997 V \\
Experimental (E) & 2.02 V & 2.01 V & 5.04 V & 5.01 V \\
A-N error & 5.51 \% & 6.50 \% & 4.01 \% & 4.01 \% \\
A-E error & 4.46 \% & 5.97 \% & 3.17 \% & 1.96 \% \\
N-E error & 1.00 \% & 0.50 \% & 0.80 \% & 1.97 \% \\
\end{longtable}
\section{Conclusions}
Before completing the lab report out and making firm conclusions, I'd
like to address our two analysis questions:
\begin{quote}
PSpice: In the transient simulation profile: what is the role of
``Maximum Step Size''? Create an example and include waveform images
to illustrate your point.
\end{quote}
Returning to our simulation of a 5V sinusoidal waveform with no DC
bias at 50kHz: the larger we allow the ``Step Size'' to go, the fewer
timesteps LTSpice will take when performing its numerical simulation,
and thus the less precise our RMS value is / the less close it is to
$\frac{5}{\sqrt{2}} \approx 3.53553 ...$. In Figures
~\ref{fig:ltspice_large_timestep},
~\ref{fig:ltspice_large_timestep_num},
~\ref{fig:ltspice_small_timestep}, and
~\ref{fig:ltspice_small_timestep_num}, we can see that restricting the
timestep size down to $\SI{1}{\ns}$ brings our RMS voltage much closer
to $\frac{5}{\sqrt{2}} \approx 3.53553$.
\begin{figure}[h]
\caption{The LTSpice simulation with no defined ``Maximum Step Size''}
\label{fig:ltspice_large_timestep}
\centering
\includegraphics[width=0.6\textwidth]{lab1_ltspice_large_timestep}
\end{figure}
\begin{figure}[h]
\caption{The RMS value of the simulation with no defined ``Maximum Step Size''}
\label{fig:ltspice_large_timestep_num}
\centering
\includegraphics[width=0.3\textwidth]{lab1_ltspice_large_timestep_num}
\end{figure}
\begin{figure}[h]
\caption{The LTSpice simulation with a ``Maximum Step Size'' of $\SI{1}{\ns}$}
\label{fig:ltspice_small_timestep}
\centering
\includegraphics[width=0.6\textwidth]{lab1_ltspice_small_timestep}
\end{figure}
\begin{figure}[h]
\caption{The RMS value of the simulation under a ``Maximum Step Size'' of $\SI{1}{\ns}$}
\label{fig:ltspice_small_timestep_num}
\centering
\includegraphics[width=0.3\textwidth]{lab1_ltspice_small_timestep_num}
\end{figure}
As for the second question:
\begin{quote}
Considering your experimental data, explain why we can conclude that
the DMM is showing the true RMS regardless of the waveform.
\end{quote}
\nocite{*}
\printbibliography

BIN
lab1_ac_2v_100hz_diag.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

BIN
lab1_ac_2v_100hz_num.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

BIN
lab1_ltspice_pulse.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB