mirror of
				git://git.openwrt.org/openwrt/openwrt.git
				synced 2025-10-25 02:54:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			1742 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1742 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*-
 | |
|  * Linux port done by David McCullough <david_mccullough@securecomputing.com>
 | |
|  * Copyright (C) 2006-2007 David McCullough
 | |
|  * Copyright (C) 2004-2005 Intel Corporation.
 | |
|  * The license and original author are listed below.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
 | |
|  *
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 | |
|  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | |
|  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 | |
|  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | |
|  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 | |
|  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #if 0
 | |
| #include <sys/cdefs.h>
 | |
| __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $");
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Cryptographic Subsystem.
 | |
|  *
 | |
|  * This code is derived from the Openbsd Cryptographic Framework (OCF)
 | |
|  * that has the copyright shown below.  Very little of the original
 | |
|  * code remains.
 | |
|  */
 | |
| /*-
 | |
|  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
 | |
|  *
 | |
|  * This code was written by Angelos D. Keromytis in Athens, Greece, in
 | |
|  * February 2000. Network Security Technologies Inc. (NSTI) kindly
 | |
|  * supported the development of this code.
 | |
|  *
 | |
|  * Copyright (c) 2000, 2001 Angelos D. Keromytis
 | |
|  *
 | |
|  * Permission to use, copy, and modify this software with or without fee
 | |
|  * is hereby granted, provided that this entire notice is included in
 | |
|  * all source code copies of any software which is or includes a copy or
 | |
|  * modification of this software.
 | |
|  *
 | |
|  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
 | |
|  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
 | |
|  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
 | |
|  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
 | |
|  * PURPOSE.
 | |
|  *
 | |
| __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $");
 | |
|  */
 | |
| 
 | |
| 
 | |
| #ifndef AUTOCONF_INCLUDED
 | |
| #include <linux/config.h>
 | |
| #endif
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/version.h>
 | |
| #include <cryptodev.h>
 | |
| 
 | |
| /*
 | |
|  * keep track of whether or not we have been initialised, a big
 | |
|  * issue if we are linked into the kernel and a driver gets started before
 | |
|  * us
 | |
|  */
 | |
| static int crypto_initted = 0;
 | |
| 
 | |
| /*
 | |
|  * Crypto drivers register themselves by allocating a slot in the
 | |
|  * crypto_drivers table with crypto_get_driverid() and then registering
 | |
|  * each algorithm they support with crypto_register() and crypto_kregister().
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * lock on driver table
 | |
|  * we track its state as spin_is_locked does not do anything on non-SMP boxes
 | |
|  */
 | |
| static spinlock_t	crypto_drivers_lock;
 | |
| static int			crypto_drivers_locked;		/* for non-SMP boxes */
 | |
| 
 | |
| #define	CRYPTO_DRIVER_LOCK() \
 | |
| 			({ \
 | |
| 				spin_lock_irqsave(&crypto_drivers_lock, d_flags); \
 | |
| 			 	crypto_drivers_locked = 1; \
 | |
| 				dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \
 | |
| 			 })
 | |
| #define	CRYPTO_DRIVER_UNLOCK() \
 | |
| 			({ \
 | |
| 			 	dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \
 | |
| 			 	crypto_drivers_locked = 0; \
 | |
| 				spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \
 | |
| 			 })
 | |
| #define	CRYPTO_DRIVER_ASSERT() \
 | |
| 			({ \
 | |
| 			 	if (!crypto_drivers_locked) { \
 | |
| 					dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \
 | |
| 			 	} \
 | |
| 			 })
 | |
| 
 | |
| /*
 | |
|  * Crypto device/driver capabilities structure.
 | |
|  *
 | |
|  * Synchronization:
 | |
|  * (d) - protected by CRYPTO_DRIVER_LOCK()
 | |
|  * (q) - protected by CRYPTO_Q_LOCK()
 | |
|  * Not tagged fields are read-only.
 | |
|  */
 | |
| struct cryptocap {
 | |
| 	device_t	cc_dev;			/* (d) device/driver */
 | |
| 	u_int32_t	cc_sessions;		/* (d) # of sessions */
 | |
| 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
 | |
| 	/*
 | |
| 	 * Largest possible operator length (in bits) for each type of
 | |
| 	 * encryption algorithm. XXX not used
 | |
| 	 */
 | |
| 	u_int16_t	cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
 | |
| 	u_int8_t	cc_alg[CRYPTO_ALGORITHM_MAX + 1];
 | |
| 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
 | |
| 
 | |
| 	int		cc_flags;		/* (d) flags */
 | |
| #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
 | |
| 	int		cc_qblocked;		/* (q) symmetric q blocked */
 | |
| 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
 | |
| };
 | |
| static struct cryptocap *crypto_drivers = NULL;
 | |
| static int crypto_drivers_num = 0;
 | |
| 
 | |
| /*
 | |
|  * There are two queues for crypto requests; one for symmetric (e.g.
 | |
|  * cipher) operations and one for asymmetric (e.g. MOD)operations.
 | |
|  * A single mutex is used to lock access to both queues.  We could
 | |
|  * have one per-queue but having one simplifies handling of block/unblock
 | |
|  * operations.
 | |
|  */
 | |
| static	int crp_sleep = 0;
 | |
| static LIST_HEAD(crp_q);		/* request queues */
 | |
| static LIST_HEAD(crp_kq);
 | |
| 
 | |
| static spinlock_t crypto_q_lock;
 | |
| 
 | |
| int crypto_all_qblocked = 0;  /* protect with Q_LOCK */
 | |
| module_param(crypto_all_qblocked, int, 0444);
 | |
| MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked");
 | |
| 
 | |
| int crypto_all_kqblocked = 0; /* protect with Q_LOCK */
 | |
| module_param(crypto_all_kqblocked, int, 0444);
 | |
| MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked");
 | |
| 
 | |
| #define	CRYPTO_Q_LOCK() \
 | |
| 			({ \
 | |
| 				spin_lock_irqsave(&crypto_q_lock, q_flags); \
 | |
| 			 	dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \
 | |
| 			 })
 | |
| #define	CRYPTO_Q_UNLOCK() \
 | |
| 			({ \
 | |
| 			 	dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \
 | |
| 				spin_unlock_irqrestore(&crypto_q_lock, q_flags); \
 | |
| 			 })
 | |
| 
 | |
| /*
 | |
|  * There are two queues for processing completed crypto requests; one
 | |
|  * for the symmetric and one for the asymmetric ops.  We only need one
 | |
|  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
 | |
|  * mutex is used to lock access to both queues.  Note that this lock
 | |
|  * must be separate from the lock on request queues to insure driver
 | |
|  * callbacks don't generate lock order reversals.
 | |
|  */
 | |
| static LIST_HEAD(crp_ret_q);		/* callback queues */
 | |
| static LIST_HEAD(crp_ret_kq);
 | |
| 
 | |
| static spinlock_t crypto_ret_q_lock;
 | |
| #define	CRYPTO_RETQ_LOCK() \
 | |
| 			({ \
 | |
| 				spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \
 | |
| 				dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \
 | |
| 			 })
 | |
| #define	CRYPTO_RETQ_UNLOCK() \
 | |
| 			({ \
 | |
| 			 	dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \
 | |
| 				spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \
 | |
| 			 })
 | |
| #define	CRYPTO_RETQ_EMPTY()	(list_empty(&crp_ret_q) && list_empty(&crp_ret_kq))
 | |
| 
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
 | |
| static kmem_cache_t *cryptop_zone;
 | |
| static kmem_cache_t *cryptodesc_zone;
 | |
| #else
 | |
| static struct kmem_cache *cryptop_zone;
 | |
| static struct kmem_cache *cryptodesc_zone;
 | |
| #endif
 | |
| 
 | |
| #define debug crypto_debug
 | |
| int crypto_debug = 0;
 | |
| module_param(crypto_debug, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_debug, "Enable debug");
 | |
| EXPORT_SYMBOL(crypto_debug);
 | |
| 
 | |
| /*
 | |
|  * Maximum number of outstanding crypto requests before we start
 | |
|  * failing requests.  We need this to prevent DOS when too many
 | |
|  * requests are arriving for us to keep up.  Otherwise we will
 | |
|  * run the system out of memory.  Since crypto is slow,  we are
 | |
|  * usually the bottleneck that needs to say, enough is enough.
 | |
|  *
 | |
|  * We cannot print errors when this condition occurs,  we are already too
 | |
|  * slow,  printing anything will just kill us
 | |
|  */
 | |
| 
 | |
| static int crypto_q_cnt = 0;
 | |
| module_param(crypto_q_cnt, int, 0444);
 | |
| MODULE_PARM_DESC(crypto_q_cnt,
 | |
| 		"Current number of outstanding crypto requests");
 | |
| 
 | |
| static int crypto_q_max = 1000;
 | |
| module_param(crypto_q_max, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_q_max,
 | |
| 		"Maximum number of outstanding crypto requests");
 | |
| 
 | |
| #define bootverbose crypto_verbose
 | |
| static int crypto_verbose = 0;
 | |
| module_param(crypto_verbose, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_verbose,
 | |
| 		"Enable verbose crypto startup");
 | |
| 
 | |
| int	crypto_usercrypto = 1;	/* userland may do crypto reqs */
 | |
| module_param(crypto_usercrypto, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_usercrypto,
 | |
| 	   "Enable/disable user-mode access to crypto support");
 | |
| 
 | |
| int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
 | |
| module_param(crypto_userasymcrypto, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_userasymcrypto,
 | |
| 	   "Enable/disable user-mode access to asymmetric crypto support");
 | |
| 
 | |
| int	crypto_devallowsoft = 0;	/* only use hardware crypto */
 | |
| module_param(crypto_devallowsoft, int, 0644);
 | |
| MODULE_PARM_DESC(crypto_devallowsoft,
 | |
| 	   "Enable/disable use of software crypto support");
 | |
| 
 | |
| static pid_t	cryptoproc = (pid_t) -1;
 | |
| static struct	completion cryptoproc_exited;
 | |
| static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait);
 | |
| static pid_t	cryptoretproc = (pid_t) -1;
 | |
| static struct	completion cryptoretproc_exited;
 | |
| static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait);
 | |
| 
 | |
| static	int crypto_proc(void *arg);
 | |
| static	int crypto_ret_proc(void *arg);
 | |
| static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
 | |
| static	int crypto_kinvoke(struct cryptkop *krp, int flags);
 | |
| static	void crypto_exit(void);
 | |
| static  int crypto_init(void);
 | |
| 
 | |
| static	struct cryptostats cryptostats;
 | |
| 
 | |
| static struct cryptocap *
 | |
| crypto_checkdriver(u_int32_t hid)
 | |
| {
 | |
| 	if (crypto_drivers == NULL)
 | |
| 		return NULL;
 | |
| 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare a driver's list of supported algorithms against another
 | |
|  * list; return non-zero if all algorithms are supported.
 | |
|  */
 | |
| static int
 | |
| driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
 | |
| {
 | |
| 	const struct cryptoini *cr;
 | |
| 
 | |
| 	/* See if all the algorithms are supported. */
 | |
| 	for (cr = cri; cr; cr = cr->cri_next)
 | |
| 		if (cap->cc_alg[cr->cri_alg] == 0)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select a driver for a new session that supports the specified
 | |
|  * algorithms and, optionally, is constrained according to the flags.
 | |
|  * The algorithm we use here is pretty stupid; just use the
 | |
|  * first driver that supports all the algorithms we need. If there
 | |
|  * are multiple drivers we choose the driver with the fewest active
 | |
|  * sessions.  We prefer hardware-backed drivers to software ones.
 | |
|  *
 | |
|  * XXX We need more smarts here (in real life too, but that's
 | |
|  * XXX another story altogether).
 | |
|  */
 | |
| static struct cryptocap *
 | |
| crypto_select_driver(const struct cryptoini *cri, int flags)
 | |
| {
 | |
| 	struct cryptocap *cap, *best;
 | |
| 	int match, hid;
 | |
| 
 | |
| 	CRYPTO_DRIVER_ASSERT();
 | |
| 
 | |
| 	/*
 | |
| 	 * Look first for hardware crypto devices if permitted.
 | |
| 	 */
 | |
| 	if (flags & CRYPTOCAP_F_HARDWARE)
 | |
| 		match = CRYPTOCAP_F_HARDWARE;
 | |
| 	else
 | |
| 		match = CRYPTOCAP_F_SOFTWARE;
 | |
| 	best = NULL;
 | |
| again:
 | |
| 	for (hid = 0; hid < crypto_drivers_num; hid++) {
 | |
| 		cap = &crypto_drivers[hid];
 | |
| 		/*
 | |
| 		 * If it's not initialized, is in the process of
 | |
| 		 * going away, or is not appropriate (hardware
 | |
| 		 * or software based on match), then skip.
 | |
| 		 */
 | |
| 		if (cap->cc_dev == NULL ||
 | |
| 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
 | |
| 		    (cap->cc_flags & match) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* verify all the algorithms are supported. */
 | |
| 		if (driver_suitable(cap, cri)) {
 | |
| 			if (best == NULL ||
 | |
| 			    cap->cc_sessions < best->cc_sessions)
 | |
| 				best = cap;
 | |
| 		}
 | |
| 	}
 | |
| 	if (best != NULL)
 | |
| 		return best;
 | |
| 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
 | |
| 		/* sort of an Algol 68-style for loop */
 | |
| 		match = CRYPTOCAP_F_SOFTWARE;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return best;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a new session.  The crid argument specifies a crypto
 | |
|  * driver to use or constraints on a driver to select (hardware
 | |
|  * only, software only, either).  Whatever driver is selected
 | |
|  * must be capable of the requested crypto algorithms.
 | |
|  */
 | |
| int
 | |
| crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	u_int32_t hid, lid;
 | |
| 	int err;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
 | |
| 		/*
 | |
| 		 * Use specified driver; verify it is capable.
 | |
| 		 */
 | |
| 		cap = crypto_checkdriver(crid);
 | |
| 		if (cap != NULL && !driver_suitable(cap, cri))
 | |
| 			cap = NULL;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No requested driver; select based on crid flags.
 | |
| 		 */
 | |
| 		cap = crypto_select_driver(cri, crid);
 | |
| 		/*
 | |
| 		 * if NULL then can't do everything in one session.
 | |
| 		 * XXX Fix this. We need to inject a "virtual" session
 | |
| 		 * XXX layer right about here.
 | |
| 		 */
 | |
| 	}
 | |
| 	if (cap != NULL) {
 | |
| 		/* Call the driver initialization routine. */
 | |
| 		hid = cap - crypto_drivers;
 | |
| 		lid = hid;		/* Pass the driver ID. */
 | |
| 		cap->cc_sessions++;
 | |
| 		CRYPTO_DRIVER_UNLOCK();
 | |
| 		err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
 | |
| 		CRYPTO_DRIVER_LOCK();
 | |
| 		if (err == 0) {
 | |
| 			(*sid) = (cap->cc_flags & 0xff000000)
 | |
| 			       | (hid & 0x00ffffff);
 | |
| 			(*sid) <<= 32;
 | |
| 			(*sid) |= (lid & 0xffffffff);
 | |
| 		} else
 | |
| 			cap->cc_sessions--;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void
 | |
| crypto_remove(struct cryptocap *cap)
 | |
| {
 | |
| 	CRYPTO_DRIVER_ASSERT();
 | |
| 	if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
 | |
| 		bzero(cap, sizeof(*cap));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete an existing session (or a reserved session on an unregistered
 | |
|  * driver).
 | |
|  */
 | |
| int
 | |
| crypto_freesession(u_int64_t sid)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	u_int32_t hid;
 | |
| 	int err = 0;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 
 | |
| 	if (crypto_drivers == NULL) {
 | |
| 		err = EINVAL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine two IDs. */
 | |
| 	hid = CRYPTO_SESID2HID(sid);
 | |
| 
 | |
| 	if (hid >= crypto_drivers_num) {
 | |
| 		dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid);
 | |
| 		err = ENOENT;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	cap = &crypto_drivers[hid];
 | |
| 
 | |
| 	if (cap->cc_dev) {
 | |
| 		CRYPTO_DRIVER_UNLOCK();
 | |
| 		/* Call the driver cleanup routine, if available, unlocked. */
 | |
| 		err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
 | |
| 		CRYPTO_DRIVER_LOCK();
 | |
| 	}
 | |
| 
 | |
| 	if (cap->cc_sessions)
 | |
| 		cap->cc_sessions--;
 | |
| 
 | |
| 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
 | |
| 		crypto_remove(cap);
 | |
| 
 | |
| done:
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return an unused driver id.  Used by drivers prior to registering
 | |
|  * support for the algorithms they handle.
 | |
|  */
 | |
| int32_t
 | |
| crypto_get_driverid(device_t dev, int flags)
 | |
| {
 | |
| 	struct cryptocap *newdrv;
 | |
| 	int i;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
 | |
| 		printf("%s: no flags specified when registering driver\n",
 | |
| 		    device_get_nameunit(dev));
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 
 | |
| 	for (i = 0; i < crypto_drivers_num; i++) {
 | |
| 		if (crypto_drivers[i].cc_dev == NULL &&
 | |
| 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Out of entries, allocate some more. */
 | |
| 	if (i == crypto_drivers_num) {
 | |
| 		/* Be careful about wrap-around. */
 | |
| 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
 | |
| 			CRYPTO_DRIVER_UNLOCK();
 | |
| 			printk("crypto: driver count wraparound!\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap),
 | |
| 				GFP_KERNEL);
 | |
| 		if (newdrv == NULL) {
 | |
| 			CRYPTO_DRIVER_UNLOCK();
 | |
| 			printk("crypto: no space to expand driver table!\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(newdrv, crypto_drivers,
 | |
| 				crypto_drivers_num * sizeof(struct cryptocap));
 | |
| 		memset(&newdrv[crypto_drivers_num], 0,
 | |
| 				crypto_drivers_num * sizeof(struct cryptocap));
 | |
| 
 | |
| 		crypto_drivers_num *= 2;
 | |
| 
 | |
| 		kfree(crypto_drivers);
 | |
| 		crypto_drivers = newdrv;
 | |
| 	}
 | |
| 
 | |
| 	/* NB: state is zero'd on free */
 | |
| 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
 | |
| 	crypto_drivers[i].cc_dev = dev;
 | |
| 	crypto_drivers[i].cc_flags = flags;
 | |
| 	if (bootverbose)
 | |
| 		printf("crypto: assign %s driver id %u, flags %u\n",
 | |
| 		    device_get_nameunit(dev), i, flags);
 | |
| 
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup a driver by name.  We match against the full device
 | |
|  * name and unit, and against just the name.  The latter gives
 | |
|  * us a simple widlcarding by device name.  On success return the
 | |
|  * driver/hardware identifier; otherwise return -1.
 | |
|  */
 | |
| int
 | |
| crypto_find_driver(const char *match)
 | |
| {
 | |
| 	int i, len = strlen(match);
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	for (i = 0; i < crypto_drivers_num; i++) {
 | |
| 		device_t dev = crypto_drivers[i].cc_dev;
 | |
| 		if (dev == NULL ||
 | |
| 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
 | |
| 			continue;
 | |
| 		if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
 | |
| 		    strncmp(match, device_get_name(dev), len) == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return i < crypto_drivers_num ? i : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the device_t for the specified driver or NULL
 | |
|  * if the driver identifier is invalid.
 | |
|  */
 | |
| device_t
 | |
| crypto_find_device_byhid(int hid)
 | |
| {
 | |
| 	struct cryptocap *cap = crypto_checkdriver(hid);
 | |
| 	return cap != NULL ? cap->cc_dev : NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the device/driver capabilities.
 | |
|  */
 | |
| int
 | |
| crypto_getcaps(int hid)
 | |
| {
 | |
| 	struct cryptocap *cap = crypto_checkdriver(hid);
 | |
| 	return cap != NULL ? cap->cc_flags : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register support for a key-related algorithm.  This routine
 | |
|  * is called once for each algorithm supported a driver.
 | |
|  */
 | |
| int
 | |
| crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int err;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 
 | |
| 	cap = crypto_checkdriver(driverid);
 | |
| 	if (cap != NULL &&
 | |
| 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
 | |
| 		/*
 | |
| 		 * XXX Do some performance testing to determine placing.
 | |
| 		 * XXX We probably need an auxiliary data structure that
 | |
| 		 * XXX describes relative performances.
 | |
| 		 */
 | |
| 
 | |
| 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
 | |
| 		if (bootverbose)
 | |
| 			printf("crypto: %s registers key alg %u flags %u\n"
 | |
| 				, device_get_nameunit(cap->cc_dev)
 | |
| 				, kalg
 | |
| 				, flags
 | |
| 			);
 | |
| 		err = 0;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register support for a non-key-related algorithm.  This routine
 | |
|  * is called once for each such algorithm supported by a driver.
 | |
|  */
 | |
| int
 | |
| crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
 | |
|     u_int32_t flags)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int err;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__,
 | |
| 			driverid, alg, maxoplen, flags);
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 
 | |
| 	cap = crypto_checkdriver(driverid);
 | |
| 	/* NB: algorithms are in the range [1..max] */
 | |
| 	if (cap != NULL &&
 | |
| 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
 | |
| 		/*
 | |
| 		 * XXX Do some performance testing to determine placing.
 | |
| 		 * XXX We probably need an auxiliary data structure that
 | |
| 		 * XXX describes relative performances.
 | |
| 		 */
 | |
| 
 | |
| 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
 | |
| 		cap->cc_max_op_len[alg] = maxoplen;
 | |
| 		if (bootverbose)
 | |
| 			printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
 | |
| 				, device_get_nameunit(cap->cc_dev)
 | |
| 				, alg
 | |
| 				, flags
 | |
| 				, maxoplen
 | |
| 			);
 | |
| 		cap->cc_sessions = 0;		/* Unmark */
 | |
| 		err = 0;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void
 | |
| driver_finis(struct cryptocap *cap)
 | |
| {
 | |
| 	u_int32_t ses, kops;
 | |
| 
 | |
| 	CRYPTO_DRIVER_ASSERT();
 | |
| 
 | |
| 	ses = cap->cc_sessions;
 | |
| 	kops = cap->cc_koperations;
 | |
| 	bzero(cap, sizeof(*cap));
 | |
| 	if (ses != 0 || kops != 0) {
 | |
| 		/*
 | |
| 		 * If there are pending sessions,
 | |
| 		 * just mark as invalid.
 | |
| 		 */
 | |
| 		cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
 | |
| 		cap->cc_sessions = ses;
 | |
| 		cap->cc_koperations = kops;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unregister a crypto driver. If there are pending sessions using it,
 | |
|  * leave enough information around so that subsequent calls using those
 | |
|  * sessions will correctly detect the driver has been unregistered and
 | |
|  * reroute requests.
 | |
|  */
 | |
| int
 | |
| crypto_unregister(u_int32_t driverid, int alg)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int i, err;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 
 | |
| 	cap = crypto_checkdriver(driverid);
 | |
| 	if (cap != NULL &&
 | |
| 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
 | |
| 	    cap->cc_alg[alg] != 0) {
 | |
| 		cap->cc_alg[alg] = 0;
 | |
| 		cap->cc_max_op_len[alg] = 0;
 | |
| 
 | |
| 		/* Was this the last algorithm ? */
 | |
| 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
 | |
| 			if (cap->cc_alg[i] != 0)
 | |
| 				break;
 | |
| 
 | |
| 		if (i == CRYPTO_ALGORITHM_MAX + 1)
 | |
| 			driver_finis(cap);
 | |
| 		err = 0;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unregister all algorithms associated with a crypto driver.
 | |
|  * If there are pending sessions using it, leave enough information
 | |
|  * around so that subsequent calls using those sessions will
 | |
|  * correctly detect the driver has been unregistered and reroute
 | |
|  * requests.
 | |
|  */
 | |
| int
 | |
| crypto_unregister_all(u_int32_t driverid)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int err;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	cap = crypto_checkdriver(driverid);
 | |
| 	if (cap != NULL) {
 | |
| 		driver_finis(cap);
 | |
| 		err = 0;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear blockage on a driver.  The what parameter indicates whether
 | |
|  * the driver is now ready for cryptop's and/or cryptokop's.
 | |
|  */
 | |
| int
 | |
| crypto_unblock(u_int32_t driverid, int what)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int err;
 | |
| 	unsigned long q_flags;
 | |
| 
 | |
| 	CRYPTO_Q_LOCK();
 | |
| 	cap = crypto_checkdriver(driverid);
 | |
| 	if (cap != NULL) {
 | |
| 		if (what & CRYPTO_SYMQ) {
 | |
| 			cap->cc_qblocked = 0;
 | |
| 			crypto_all_qblocked = 0;
 | |
| 		}
 | |
| 		if (what & CRYPTO_ASYMQ) {
 | |
| 			cap->cc_kqblocked = 0;
 | |
| 			crypto_all_kqblocked = 0;
 | |
| 		}
 | |
| 		if (crp_sleep)
 | |
| 			wake_up_interruptible(&cryptoproc_wait);
 | |
| 		err = 0;
 | |
| 	} else
 | |
| 		err = EINVAL;
 | |
| 	CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a crypto request to a queue, to be processed by the kernel thread.
 | |
|  */
 | |
| int
 | |
| crypto_dispatch(struct cryptop *crp)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	int result = -1;
 | |
| 	unsigned long q_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 
 | |
| 	cryptostats.cs_ops++;
 | |
| 
 | |
| 	CRYPTO_Q_LOCK();
 | |
| 	if (crypto_q_cnt >= crypto_q_max) {
 | |
| 		CRYPTO_Q_UNLOCK();
 | |
| 		cryptostats.cs_drops++;
 | |
| 		return ENOMEM;
 | |
| 	}
 | |
| 	crypto_q_cnt++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Caller marked the request to be processed immediately; dispatch
 | |
| 	 * it directly to the driver unless the driver is currently blocked.
 | |
| 	 */
 | |
| 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
 | |
| 		int hid = CRYPTO_SESID2HID(crp->crp_sid);
 | |
| 		cap = crypto_checkdriver(hid);
 | |
| 		/* Driver cannot disappear when there is an active session. */
 | |
| 		KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
 | |
| 		if (!cap->cc_qblocked) {
 | |
| 			crypto_all_qblocked = 0;
 | |
| 			crypto_drivers[hid].cc_qblocked = 1;
 | |
| 			CRYPTO_Q_UNLOCK();
 | |
| 			result = crypto_invoke(cap, crp, 0);
 | |
| 			CRYPTO_Q_LOCK();
 | |
| 			if (result != ERESTART)
 | |
| 				crypto_drivers[hid].cc_qblocked = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (result == ERESTART) {
 | |
| 		/*
 | |
| 		 * The driver ran out of resources, mark the
 | |
| 		 * driver ``blocked'' for cryptop's and put
 | |
| 		 * the request back in the queue.  It would
 | |
| 		 * best to put the request back where we got
 | |
| 		 * it but that's hard so for now we put it
 | |
| 		 * at the front.  This should be ok; putting
 | |
| 		 * it at the end does not work.
 | |
| 		 */
 | |
| 		list_add(&crp->crp_next, &crp_q);
 | |
| 		cryptostats.cs_blocks++;
 | |
| 	} else if (result == -1) {
 | |
| 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
 | |
| 	}
 | |
| 	if (crp_sleep)
 | |
| 		wake_up_interruptible(&cryptoproc_wait);
 | |
| 	CRYPTO_Q_UNLOCK();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add an asymetric crypto request to a queue,
 | |
|  * to be processed by the kernel thread.
 | |
|  */
 | |
| int
 | |
| crypto_kdispatch(struct cryptkop *krp)
 | |
| {
 | |
| 	int error;
 | |
| 	unsigned long q_flags;
 | |
| 
 | |
| 	cryptostats.cs_kops++;
 | |
| 
 | |
| 	error = crypto_kinvoke(krp, krp->krp_crid);
 | |
| 	if (error == ERESTART) {
 | |
| 		CRYPTO_Q_LOCK();
 | |
| 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
 | |
| 		if (crp_sleep)
 | |
| 			wake_up_interruptible(&cryptoproc_wait);
 | |
| 		CRYPTO_Q_UNLOCK();
 | |
| 		error = 0;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify a driver is suitable for the specified operation.
 | |
|  */
 | |
| static __inline int
 | |
| kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
 | |
| {
 | |
| 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select a driver for an asym operation.  The driver must
 | |
|  * support the necessary algorithm.  The caller can constrain
 | |
|  * which device is selected with the flags parameter.  The
 | |
|  * algorithm we use here is pretty stupid; just use the first
 | |
|  * driver that supports the algorithms we need. If there are
 | |
|  * multiple suitable drivers we choose the driver with the
 | |
|  * fewest active operations.  We prefer hardware-backed
 | |
|  * drivers to software ones when either may be used.
 | |
|  */
 | |
| static struct cryptocap *
 | |
| crypto_select_kdriver(const struct cryptkop *krp, int flags)
 | |
| {
 | |
| 	struct cryptocap *cap, *best, *blocked;
 | |
| 	int match, hid;
 | |
| 
 | |
| 	CRYPTO_DRIVER_ASSERT();
 | |
| 
 | |
| 	/*
 | |
| 	 * Look first for hardware crypto devices if permitted.
 | |
| 	 */
 | |
| 	if (flags & CRYPTOCAP_F_HARDWARE)
 | |
| 		match = CRYPTOCAP_F_HARDWARE;
 | |
| 	else
 | |
| 		match = CRYPTOCAP_F_SOFTWARE;
 | |
| 	best = NULL;
 | |
| 	blocked = NULL;
 | |
| again:
 | |
| 	for (hid = 0; hid < crypto_drivers_num; hid++) {
 | |
| 		cap = &crypto_drivers[hid];
 | |
| 		/*
 | |
| 		 * If it's not initialized, is in the process of
 | |
| 		 * going away, or is not appropriate (hardware
 | |
| 		 * or software based on match), then skip.
 | |
| 		 */
 | |
| 		if (cap->cc_dev == NULL ||
 | |
| 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
 | |
| 		    (cap->cc_flags & match) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* verify all the algorithms are supported. */
 | |
| 		if (kdriver_suitable(cap, krp)) {
 | |
| 			if (best == NULL ||
 | |
| 			    cap->cc_koperations < best->cc_koperations)
 | |
| 				best = cap;
 | |
| 		}
 | |
| 	}
 | |
| 	if (best != NULL)
 | |
| 		return best;
 | |
| 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
 | |
| 		/* sort of an Algol 68-style for loop */
 | |
| 		match = CRYPTOCAP_F_SOFTWARE;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return best;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dispatch an assymetric crypto request.
 | |
|  */
 | |
| static int
 | |
| crypto_kinvoke(struct cryptkop *krp, int crid)
 | |
| {
 | |
| 	struct cryptocap *cap = NULL;
 | |
| 	int error;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
 | |
| 	KASSERT(krp->krp_callback != NULL,
 | |
| 	    ("%s: krp->crp_callback == NULL", __func__));
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
 | |
| 		cap = crypto_checkdriver(crid);
 | |
| 		if (cap != NULL) {
 | |
| 			/*
 | |
| 			 * Driver present, it must support the necessary
 | |
| 			 * algorithm and, if s/w drivers are excluded,
 | |
| 			 * it must be registered as hardware-backed.
 | |
| 			 */
 | |
| 			if (!kdriver_suitable(cap, krp) ||
 | |
| 			    (!crypto_devallowsoft &&
 | |
| 			     (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
 | |
| 				cap = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No requested driver; select based on crid flags.
 | |
| 		 */
 | |
| 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
 | |
| 			crid &= ~CRYPTOCAP_F_SOFTWARE;
 | |
| 		cap = crypto_select_kdriver(krp, crid);
 | |
| 	}
 | |
| 	if (cap != NULL && !cap->cc_kqblocked) {
 | |
| 		krp->krp_hid = cap - crypto_drivers;
 | |
| 		cap->cc_koperations++;
 | |
| 		CRYPTO_DRIVER_UNLOCK();
 | |
| 		error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
 | |
| 		CRYPTO_DRIVER_LOCK();
 | |
| 		if (error == ERESTART) {
 | |
| 			cap->cc_koperations--;
 | |
| 			CRYPTO_DRIVER_UNLOCK();
 | |
| 			return (error);
 | |
| 		}
 | |
| 		/* return the actual device used */
 | |
| 		krp->krp_crid = krp->krp_hid;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * NB: cap is !NULL if device is blocked; in
 | |
| 		 *     that case return ERESTART so the operation
 | |
| 		 *     is resubmitted if possible.
 | |
| 		 */
 | |
| 		error = (cap == NULL) ? ENODEV : ERESTART;
 | |
| 	}
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	if (error) {
 | |
| 		krp->krp_status = error;
 | |
| 		crypto_kdone(krp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Dispatch a crypto request to the appropriate crypto devices.
 | |
|  */
 | |
| static int
 | |
| crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
 | |
| {
 | |
| 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
 | |
| 	KASSERT(crp->crp_callback != NULL,
 | |
| 	    ("%s: crp->crp_callback == NULL", __func__));
 | |
| 	KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 
 | |
| #ifdef CRYPTO_TIMING
 | |
| 	if (crypto_timing)
 | |
| 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
 | |
| #endif
 | |
| 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
 | |
| 		struct cryptodesc *crd;
 | |
| 		u_int64_t nid;
 | |
| 
 | |
| 		/*
 | |
| 		 * Driver has unregistered; migrate the session and return
 | |
| 		 * an error to the caller so they'll resubmit the op.
 | |
| 		 *
 | |
| 		 * XXX: What if there are more already queued requests for this
 | |
| 		 *      session?
 | |
| 		 */
 | |
| 		crypto_freesession(crp->crp_sid);
 | |
| 
 | |
| 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
 | |
| 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
 | |
| 
 | |
| 		/* XXX propagate flags from initial session? */
 | |
| 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
 | |
| 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
 | |
| 			crp->crp_sid = nid;
 | |
| 
 | |
| 		crp->crp_etype = EAGAIN;
 | |
| 		crypto_done(crp);
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Invoke the driver to process the request.
 | |
| 		 */
 | |
| 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release a set of crypto descriptors.
 | |
|  */
 | |
| void
 | |
| crypto_freereq(struct cryptop *crp)
 | |
| {
 | |
| 	struct cryptodesc *crd;
 | |
| 
 | |
| 	if (crp == NULL)
 | |
| 		return;
 | |
| 
 | |
| #ifdef DIAGNOSTIC
 | |
| 	{
 | |
| 		struct cryptop *crp2;
 | |
| 		unsigned long q_flags;
 | |
| 
 | |
| 		CRYPTO_Q_LOCK();
 | |
| 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
 | |
| 			KASSERT(crp2 != crp,
 | |
| 			    ("Freeing cryptop from the crypto queue (%p).",
 | |
| 			    crp));
 | |
| 		}
 | |
| 		CRYPTO_Q_UNLOCK();
 | |
| 		CRYPTO_RETQ_LOCK();
 | |
| 		TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
 | |
| 			KASSERT(crp2 != crp,
 | |
| 			    ("Freeing cryptop from the return queue (%p).",
 | |
| 			    crp));
 | |
| 		}
 | |
| 		CRYPTO_RETQ_UNLOCK();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	while ((crd = crp->crp_desc) != NULL) {
 | |
| 		crp->crp_desc = crd->crd_next;
 | |
| 		kmem_cache_free(cryptodesc_zone, crd);
 | |
| 	}
 | |
| 	kmem_cache_free(cryptop_zone, crp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire a set of crypto descriptors.
 | |
|  */
 | |
| struct cryptop *
 | |
| crypto_getreq(int num)
 | |
| {
 | |
| 	struct cryptodesc *crd;
 | |
| 	struct cryptop *crp;
 | |
| 
 | |
| 	crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC);
 | |
| 	if (crp != NULL) {
 | |
| 		memset(crp, 0, sizeof(*crp));
 | |
| 		INIT_LIST_HEAD(&crp->crp_next);
 | |
| 		init_waitqueue_head(&crp->crp_waitq);
 | |
| 		while (num--) {
 | |
| 			crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC);
 | |
| 			if (crd == NULL) {
 | |
| 				crypto_freereq(crp);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			memset(crd, 0, sizeof(*crd));
 | |
| 			crd->crd_next = crp->crp_desc;
 | |
| 			crp->crp_desc = crd;
 | |
| 		}
 | |
| 	}
 | |
| 	return crp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke the callback on behalf of the driver.
 | |
|  */
 | |
| void
 | |
| crypto_done(struct cryptop *crp)
 | |
| {
 | |
| 	unsigned long q_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 	if ((crp->crp_flags & CRYPTO_F_DONE) == 0) {
 | |
| 		crp->crp_flags |= CRYPTO_F_DONE;
 | |
| 		CRYPTO_Q_LOCK();
 | |
| 		crypto_q_cnt--;
 | |
| 		CRYPTO_Q_UNLOCK();
 | |
| 	} else
 | |
| 		printk("crypto: crypto_done op already done, flags 0x%x",
 | |
| 				crp->crp_flags);
 | |
| 	if (crp->crp_etype != 0)
 | |
| 		cryptostats.cs_errs++;
 | |
| 	/*
 | |
| 	 * CBIMM means unconditionally do the callback immediately;
 | |
| 	 * CBIFSYNC means do the callback immediately only if the
 | |
| 	 * operation was done synchronously.  Both are used to avoid
 | |
| 	 * doing extraneous context switches; the latter is mostly
 | |
| 	 * used with the software crypto driver.
 | |
| 	 */
 | |
| 	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
 | |
| 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
 | |
| 	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
 | |
| 		/*
 | |
| 		 * Do the callback directly.  This is ok when the
 | |
| 		 * callback routine does very little (e.g. the
 | |
| 		 * /dev/crypto callback method just does a wakeup).
 | |
| 		 */
 | |
| 		crp->crp_callback(crp);
 | |
| 	} else {
 | |
| 		unsigned long r_flags;
 | |
| 		/*
 | |
| 		 * Normal case; queue the callback for the thread.
 | |
| 		 */
 | |
| 		CRYPTO_RETQ_LOCK();
 | |
| 		if (CRYPTO_RETQ_EMPTY())
 | |
| 			wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
 | |
| 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
 | |
| 		CRYPTO_RETQ_UNLOCK();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke the callback on behalf of the driver.
 | |
|  */
 | |
| void
 | |
| crypto_kdone(struct cryptkop *krp)
 | |
| {
 | |
| 	struct cryptocap *cap;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	if ((krp->krp_flags & CRYPTO_KF_DONE) != 0)
 | |
| 		printk("crypto: crypto_kdone op already done, flags 0x%x",
 | |
| 				krp->krp_flags);
 | |
| 	krp->krp_flags |= CRYPTO_KF_DONE;
 | |
| 	if (krp->krp_status != 0)
 | |
| 		cryptostats.cs_kerrs++;
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	/* XXX: What if driver is loaded in the meantime? */
 | |
| 	if (krp->krp_hid < crypto_drivers_num) {
 | |
| 		cap = &crypto_drivers[krp->krp_hid];
 | |
| 		cap->cc_koperations--;
 | |
| 		KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
 | |
| 		if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
 | |
| 			crypto_remove(cap);
 | |
| 	}
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	/*
 | |
| 	 * CBIMM means unconditionally do the callback immediately;
 | |
| 	 * This is used to avoid doing extraneous context switches
 | |
| 	 */
 | |
| 	if ((krp->krp_flags & CRYPTO_KF_CBIMM)) {
 | |
| 		/*
 | |
| 		 * Do the callback directly.  This is ok when the
 | |
| 		 * callback routine does very little (e.g. the
 | |
| 		 * /dev/crypto callback method just does a wakeup).
 | |
| 		 */
 | |
| 		krp->krp_callback(krp);
 | |
| 	} else {
 | |
| 		unsigned long r_flags;
 | |
| 		/*
 | |
| 		 * Normal case; queue the callback for the thread.
 | |
| 		 */
 | |
| 		CRYPTO_RETQ_LOCK();
 | |
| 		if (CRYPTO_RETQ_EMPTY())
 | |
| 			wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */
 | |
| 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
 | |
| 		CRYPTO_RETQ_UNLOCK();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| crypto_getfeat(int *featp)
 | |
| {
 | |
| 	int hid, kalg, feat = 0;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	for (hid = 0; hid < crypto_drivers_num; hid++) {
 | |
| 		const struct cryptocap *cap = &crypto_drivers[hid];
 | |
| 
 | |
| 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
 | |
| 		    !crypto_devallowsoft) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
 | |
| 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
 | |
| 				feat |=  1 << kalg;
 | |
| 	}
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 	*featp = feat;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Crypto thread, dispatches crypto requests.
 | |
|  */
 | |
| static int
 | |
| crypto_proc(void *arg)
 | |
| {
 | |
| 	struct cryptop *crp, *submit;
 | |
| 	struct cryptkop *krp, *krpp;
 | |
| 	struct cryptocap *cap;
 | |
| 	u_int32_t hid;
 | |
| 	int result, hint;
 | |
| 	unsigned long q_flags;
 | |
| 
 | |
| 	ocf_daemonize("crypto");
 | |
| 
 | |
| 	CRYPTO_Q_LOCK();
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * we need to make sure we don't get into a busy loop with nothing
 | |
| 		 * to do,  the two crypto_all_*blocked vars help us find out when
 | |
| 		 * we are all full and can do nothing on any driver or Q.  If so we
 | |
| 		 * wait for an unblock.
 | |
| 		 */
 | |
| 		crypto_all_qblocked  = !list_empty(&crp_q);
 | |
| 
 | |
| 		/*
 | |
| 		 * Find the first element in the queue that can be
 | |
| 		 * processed and look-ahead to see if multiple ops
 | |
| 		 * are ready for the same driver.
 | |
| 		 */
 | |
| 		submit = NULL;
 | |
| 		hint = 0;
 | |
| 		list_for_each_entry(crp, &crp_q, crp_next) {
 | |
| 			hid = CRYPTO_SESID2HID(crp->crp_sid);
 | |
| 			cap = crypto_checkdriver(hid);
 | |
| 			/*
 | |
| 			 * Driver cannot disappear when there is an active
 | |
| 			 * session.
 | |
| 			 */
 | |
| 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 | |
| 			    __func__, __LINE__));
 | |
| 			if (cap == NULL || cap->cc_dev == NULL) {
 | |
| 				/* Op needs to be migrated, process it. */
 | |
| 				if (submit == NULL)
 | |
| 					submit = crp;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (!cap->cc_qblocked) {
 | |
| 				if (submit != NULL) {
 | |
| 					/*
 | |
| 					 * We stop on finding another op,
 | |
| 					 * regardless whether its for the same
 | |
| 					 * driver or not.  We could keep
 | |
| 					 * searching the queue but it might be
 | |
| 					 * better to just use a per-driver
 | |
| 					 * queue instead.
 | |
| 					 */
 | |
| 					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
 | |
| 						hint = CRYPTO_HINT_MORE;
 | |
| 					break;
 | |
| 				} else {
 | |
| 					submit = crp;
 | |
| 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
 | |
| 						break;
 | |
| 					/* keep scanning for more are q'd */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (submit != NULL) {
 | |
| 			hid = CRYPTO_SESID2HID(submit->crp_sid);
 | |
| 			crypto_all_qblocked = 0;
 | |
| 			list_del(&submit->crp_next);
 | |
| 			crypto_drivers[hid].cc_qblocked = 1;
 | |
| 			cap = crypto_checkdriver(hid);
 | |
| 			CRYPTO_Q_UNLOCK();
 | |
| 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
 | |
| 			    __func__, __LINE__));
 | |
| 			result = crypto_invoke(cap, submit, hint);
 | |
| 			CRYPTO_Q_LOCK();
 | |
| 			if (result == ERESTART) {
 | |
| 				/*
 | |
| 				 * The driver ran out of resources, mark the
 | |
| 				 * driver ``blocked'' for cryptop's and put
 | |
| 				 * the request back in the queue.  It would
 | |
| 				 * best to put the request back where we got
 | |
| 				 * it but that's hard so for now we put it
 | |
| 				 * at the front.  This should be ok; putting
 | |
| 				 * it at the end does not work.
 | |
| 				 */
 | |
| 				/* XXX validate sid again? */
 | |
| 				list_add(&submit->crp_next, &crp_q);
 | |
| 				cryptostats.cs_blocks++;
 | |
| 			} else
 | |
| 				crypto_drivers[hid].cc_qblocked=0;
 | |
| 		}
 | |
| 
 | |
| 		crypto_all_kqblocked = !list_empty(&crp_kq);
 | |
| 
 | |
| 		/* As above, but for key ops */
 | |
| 		krp = NULL;
 | |
| 		list_for_each_entry(krpp, &crp_kq, krp_next) {
 | |
| 			cap = crypto_checkdriver(krpp->krp_hid);
 | |
| 			if (cap == NULL || cap->cc_dev == NULL) {
 | |
| 				/*
 | |
| 				 * Operation needs to be migrated, invalidate
 | |
| 				 * the assigned device so it will reselect a
 | |
| 				 * new one below.  Propagate the original
 | |
| 				 * crid selection flags if supplied.
 | |
| 				 */
 | |
| 				krp->krp_hid = krp->krp_crid &
 | |
| 				    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
 | |
| 				if (krp->krp_hid == 0)
 | |
| 					krp->krp_hid =
 | |
| 				    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (!cap->cc_kqblocked) {
 | |
| 				krp = krpp;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (krp != NULL) {
 | |
| 			crypto_all_kqblocked = 0;
 | |
| 			list_del(&krp->krp_next);
 | |
| 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
 | |
| 			CRYPTO_Q_UNLOCK();
 | |
| 			result = crypto_kinvoke(krp, krp->krp_hid);
 | |
| 			CRYPTO_Q_LOCK();
 | |
| 			if (result == ERESTART) {
 | |
| 				/*
 | |
| 				 * The driver ran out of resources, mark the
 | |
| 				 * driver ``blocked'' for cryptkop's and put
 | |
| 				 * the request back in the queue.  It would
 | |
| 				 * best to put the request back where we got
 | |
| 				 * it but that's hard so for now we put it
 | |
| 				 * at the front.  This should be ok; putting
 | |
| 				 * it at the end does not work.
 | |
| 				 */
 | |
| 				/* XXX validate sid again? */
 | |
| 				list_add(&krp->krp_next, &crp_kq);
 | |
| 				cryptostats.cs_kblocks++;
 | |
| 			} else
 | |
| 				crypto_drivers[krp->krp_hid].cc_kqblocked = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (submit == NULL && krp == NULL) {
 | |
| 			/*
 | |
| 			 * Nothing more to be processed.  Sleep until we're
 | |
| 			 * woken because there are more ops to process.
 | |
| 			 * This happens either by submission or by a driver
 | |
| 			 * becoming unblocked and notifying us through
 | |
| 			 * crypto_unblock.  Note that when we wakeup we
 | |
| 			 * start processing each queue again from the
 | |
| 			 * front. It's not clear that it's important to
 | |
| 			 * preserve this ordering since ops may finish
 | |
| 			 * out of order if dispatched to different devices
 | |
| 			 * and some become blocked while others do not.
 | |
| 			 */
 | |
| 			dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n",
 | |
| 					__FUNCTION__,
 | |
| 					list_empty(&crp_q), crypto_all_qblocked,
 | |
| 					list_empty(&crp_kq), crypto_all_kqblocked);
 | |
| 			CRYPTO_Q_UNLOCK();
 | |
| 			crp_sleep = 1;
 | |
| 			wait_event_interruptible(cryptoproc_wait,
 | |
| 					!(list_empty(&crp_q) || crypto_all_qblocked) ||
 | |
| 					!(list_empty(&crp_kq) || crypto_all_kqblocked) ||
 | |
| 					cryptoproc == (pid_t) -1);
 | |
| 			crp_sleep = 0;
 | |
| 			if (signal_pending (current)) {
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
 | |
| 				spin_lock_irq(¤t->sigmask_lock);
 | |
| #endif
 | |
| 				flush_signals(current);
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
 | |
| 				spin_unlock_irq(¤t->sigmask_lock);
 | |
| #endif
 | |
| 			}
 | |
| 			CRYPTO_Q_LOCK();
 | |
| 			dprintk("%s - awake\n", __FUNCTION__);
 | |
| 			if (cryptoproc == (pid_t) -1)
 | |
| 				break;
 | |
| 			cryptostats.cs_intrs++;
 | |
| 		}
 | |
| 	}
 | |
| 	CRYPTO_Q_UNLOCK();
 | |
| 	complete_and_exit(&cryptoproc_exited, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Crypto returns thread, does callbacks for processed crypto requests.
 | |
|  * Callbacks are done here, rather than in the crypto drivers, because
 | |
|  * callbacks typically are expensive and would slow interrupt handling.
 | |
|  */
 | |
| static int
 | |
| crypto_ret_proc(void *arg)
 | |
| {
 | |
| 	struct cryptop *crpt;
 | |
| 	struct cryptkop *krpt;
 | |
| 	unsigned long  r_flags;
 | |
| 
 | |
| 	ocf_daemonize("crypto_ret");
 | |
| 
 | |
| 	CRYPTO_RETQ_LOCK();
 | |
| 	for (;;) {
 | |
| 		/* Harvest return q's for completed ops */
 | |
| 		crpt = NULL;
 | |
| 		if (!list_empty(&crp_ret_q))
 | |
| 			crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next);
 | |
| 		if (crpt != NULL)
 | |
| 			list_del(&crpt->crp_next);
 | |
| 
 | |
| 		krpt = NULL;
 | |
| 		if (!list_empty(&crp_ret_kq))
 | |
| 			krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next);
 | |
| 		if (krpt != NULL)
 | |
| 			list_del(&krpt->krp_next);
 | |
| 
 | |
| 		if (crpt != NULL || krpt != NULL) {
 | |
| 			CRYPTO_RETQ_UNLOCK();
 | |
| 			/*
 | |
| 			 * Run callbacks unlocked.
 | |
| 			 */
 | |
| 			if (crpt != NULL)
 | |
| 				crpt->crp_callback(crpt);
 | |
| 			if (krpt != NULL)
 | |
| 				krpt->krp_callback(krpt);
 | |
| 			CRYPTO_RETQ_LOCK();
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Nothing more to be processed.  Sleep until we're
 | |
| 			 * woken because there are more returns to process.
 | |
| 			 */
 | |
| 			dprintk("%s - sleeping\n", __FUNCTION__);
 | |
| 			CRYPTO_RETQ_UNLOCK();
 | |
| 			wait_event_interruptible(cryptoretproc_wait,
 | |
| 					cryptoretproc == (pid_t) -1 ||
 | |
| 					!list_empty(&crp_ret_q) ||
 | |
| 					!list_empty(&crp_ret_kq));
 | |
| 			if (signal_pending (current)) {
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
 | |
| 				spin_lock_irq(¤t->sigmask_lock);
 | |
| #endif
 | |
| 				flush_signals(current);
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
 | |
| 				spin_unlock_irq(¤t->sigmask_lock);
 | |
| #endif
 | |
| 			}
 | |
| 			CRYPTO_RETQ_LOCK();
 | |
| 			dprintk("%s - awake\n", __FUNCTION__);
 | |
| 			if (cryptoretproc == (pid_t) -1) {
 | |
| 				dprintk("%s - EXITING!\n", __FUNCTION__);
 | |
| 				break;
 | |
| 			}
 | |
| 			cryptostats.cs_rets++;
 | |
| 		}
 | |
| 	}
 | |
| 	CRYPTO_RETQ_UNLOCK();
 | |
| 	complete_and_exit(&cryptoretproc_exited, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if 0 /* should put this into /proc or something */
 | |
| static void
 | |
| db_show_drivers(void)
 | |
| {
 | |
| 	int hid;
 | |
| 
 | |
| 	db_printf("%12s %4s %4s %8s %2s %2s\n"
 | |
| 		, "Device"
 | |
| 		, "Ses"
 | |
| 		, "Kops"
 | |
| 		, "Flags"
 | |
| 		, "QB"
 | |
| 		, "KB"
 | |
| 	);
 | |
| 	for (hid = 0; hid < crypto_drivers_num; hid++) {
 | |
| 		const struct cryptocap *cap = &crypto_drivers[hid];
 | |
| 		if (cap->cc_dev == NULL)
 | |
| 			continue;
 | |
| 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
 | |
| 		    , device_get_nameunit(cap->cc_dev)
 | |
| 		    , cap->cc_sessions
 | |
| 		    , cap->cc_koperations
 | |
| 		    , cap->cc_flags
 | |
| 		    , cap->cc_qblocked
 | |
| 		    , cap->cc_kqblocked
 | |
| 		);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| DB_SHOW_COMMAND(crypto, db_show_crypto)
 | |
| {
 | |
| 	struct cryptop *crp;
 | |
| 
 | |
| 	db_show_drivers();
 | |
| 	db_printf("\n");
 | |
| 
 | |
| 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
 | |
| 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
 | |
| 	    "Desc", "Callback");
 | |
| 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
 | |
| 		db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
 | |
| 		    , (int) CRYPTO_SESID2HID(crp->crp_sid)
 | |
| 		    , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
 | |
| 		    , crp->crp_ilen, crp->crp_olen
 | |
| 		    , crp->crp_etype
 | |
| 		    , crp->crp_flags
 | |
| 		    , crp->crp_desc
 | |
| 		    , crp->crp_callback
 | |
| 		);
 | |
| 	}
 | |
| 	if (!TAILQ_EMPTY(&crp_ret_q)) {
 | |
| 		db_printf("\n%4s %4s %4s %8s\n",
 | |
| 		    "HID", "Etype", "Flags", "Callback");
 | |
| 		TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
 | |
| 			db_printf("%4u %4u %04x %8p\n"
 | |
| 			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
 | |
| 			    , crp->crp_etype
 | |
| 			    , crp->crp_flags
 | |
| 			    , crp->crp_callback
 | |
| 			);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
 | |
| {
 | |
| 	struct cryptkop *krp;
 | |
| 
 | |
| 	db_show_drivers();
 | |
| 	db_printf("\n");
 | |
| 
 | |
| 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
 | |
| 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
 | |
| 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
 | |
| 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
 | |
| 		    , krp->krp_op
 | |
| 		    , krp->krp_status
 | |
| 		    , krp->krp_iparams, krp->krp_oparams
 | |
| 		    , krp->krp_crid, krp->krp_hid
 | |
| 		    , krp->krp_callback
 | |
| 		);
 | |
| 	}
 | |
| 	if (!TAILQ_EMPTY(&crp_ret_q)) {
 | |
| 		db_printf("%4s %5s %8s %4s %8s\n",
 | |
| 		    "Op", "Status", "CRID", "HID", "Callback");
 | |
| 		TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
 | |
| 			db_printf("%4u %5u %08x %4u %8p\n"
 | |
| 			    , krp->krp_op
 | |
| 			    , krp->krp_status
 | |
| 			    , krp->krp_crid, krp->krp_hid
 | |
| 			    , krp->krp_callback
 | |
| 			);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static int
 | |
| crypto_init(void)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	dprintk("%s(0x%x)\n", __FUNCTION__, (int) crypto_init);
 | |
| 
 | |
| 	if (crypto_initted)
 | |
| 		return 0;
 | |
| 	crypto_initted = 1;
 | |
| 
 | |
| 	spin_lock_init(&crypto_drivers_lock);
 | |
| 	spin_lock_init(&crypto_q_lock);
 | |
| 	spin_lock_init(&crypto_ret_q_lock);
 | |
| 
 | |
| 	cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop),
 | |
| 				       0, SLAB_HWCACHE_ALIGN, NULL
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
 | |
| 				       , NULL
 | |
| #endif
 | |
| 					);
 | |
| 
 | |
| 	cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc),
 | |
| 				       0, SLAB_HWCACHE_ALIGN, NULL
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
 | |
| 				       , NULL
 | |
| #endif
 | |
| 					);
 | |
| 
 | |
| 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
 | |
| 		printk("crypto: crypto_init cannot setup crypto zones\n");
 | |
| 		error = ENOMEM;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
 | |
| 	crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
 | |
| 			GFP_KERNEL);
 | |
| 	if (crypto_drivers == NULL) {
 | |
| 		printk("crypto: crypto_init cannot setup crypto drivers\n");
 | |
| 		error = ENOMEM;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap));
 | |
| 
 | |
| 	init_completion(&cryptoproc_exited);
 | |
| 	init_completion(&cryptoretproc_exited);
 | |
| 
 | |
| 	cryptoproc = 0; /* to avoid race condition where proc runs first */
 | |
| 	cryptoproc = kernel_thread(crypto_proc, NULL, CLONE_FS|CLONE_FILES);
 | |
| 	if (cryptoproc < 0) {
 | |
| 		error = cryptoproc;
 | |
| 		printk("crypto: crypto_init cannot start crypto thread; error %d",
 | |
| 			error);
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	cryptoretproc = 0; /* to avoid race condition where proc runs first */
 | |
| 	cryptoretproc = kernel_thread(crypto_ret_proc, NULL, CLONE_FS|CLONE_FILES);
 | |
| 	if (cryptoretproc < 0) {
 | |
| 		error = cryptoretproc;
 | |
| 		printk("crypto: crypto_init cannot start cryptoret thread; error %d",
 | |
| 				error);
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	crypto_exit();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| crypto_exit(void)
 | |
| {
 | |
| 	pid_t p;
 | |
| 	unsigned long d_flags;
 | |
| 
 | |
| 	dprintk("%s()\n", __FUNCTION__);
 | |
| 
 | |
| 	/*
 | |
| 	 * Terminate any crypto threads.
 | |
| 	 */
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	p = cryptoproc;
 | |
| 	cryptoproc = (pid_t) -1;
 | |
| 	kill_proc(p, SIGTERM, 1);
 | |
| 	wake_up_interruptible(&cryptoproc_wait);
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	wait_for_completion(&cryptoproc_exited);
 | |
| 
 | |
| 	CRYPTO_DRIVER_LOCK();
 | |
| 	p = cryptoretproc;
 | |
| 	cryptoretproc = (pid_t) -1;
 | |
| 	kill_proc(p, SIGTERM, 1);
 | |
| 	wake_up_interruptible(&cryptoretproc_wait);
 | |
| 	CRYPTO_DRIVER_UNLOCK();
 | |
| 
 | |
| 	wait_for_completion(&cryptoretproc_exited);
 | |
| 
 | |
| 	/* XXX flush queues??? */
 | |
| 
 | |
| 	/* 
 | |
| 	 * Reclaim dynamically allocated resources.
 | |
| 	 */
 | |
| 	if (crypto_drivers != NULL)
 | |
| 		kfree(crypto_drivers);
 | |
| 
 | |
| 	if (cryptodesc_zone != NULL)
 | |
| 		kmem_cache_destroy(cryptodesc_zone);
 | |
| 	if (cryptop_zone != NULL)
 | |
| 		kmem_cache_destroy(cryptop_zone);
 | |
| }
 | |
| 
 | |
| 
 | |
| EXPORT_SYMBOL(crypto_newsession);
 | |
| EXPORT_SYMBOL(crypto_freesession);
 | |
| EXPORT_SYMBOL(crypto_get_driverid);
 | |
| EXPORT_SYMBOL(crypto_kregister);
 | |
| EXPORT_SYMBOL(crypto_register);
 | |
| EXPORT_SYMBOL(crypto_unregister);
 | |
| EXPORT_SYMBOL(crypto_unregister_all);
 | |
| EXPORT_SYMBOL(crypto_unblock);
 | |
| EXPORT_SYMBOL(crypto_dispatch);
 | |
| EXPORT_SYMBOL(crypto_kdispatch);
 | |
| EXPORT_SYMBOL(crypto_freereq);
 | |
| EXPORT_SYMBOL(crypto_getreq);
 | |
| EXPORT_SYMBOL(crypto_done);
 | |
| EXPORT_SYMBOL(crypto_kdone);
 | |
| EXPORT_SYMBOL(crypto_getfeat);
 | |
| EXPORT_SYMBOL(crypto_userasymcrypto);
 | |
| EXPORT_SYMBOL(crypto_getcaps);
 | |
| EXPORT_SYMBOL(crypto_find_driver);
 | |
| EXPORT_SYMBOL(crypto_find_device_byhid);
 | |
| 
 | |
| module_init(crypto_init);
 | |
| module_exit(crypto_exit);
 | |
| 
 | |
| MODULE_LICENSE("BSD");
 | |
| MODULE_AUTHOR("David McCullough <david_mccullough@securecomputing.com>");
 | |
| MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)");
 |