mirror of
				git://git.openwrt.org/openwrt/openwrt.git
				synced 2025-10-30 21:44:27 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			2231 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2231 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*-
 | |
|  * Linux port done by David McCullough <david_mccullough@mcafee.com>
 | |
|  * Copyright (C) 2004-2010 David McCullough
 | |
|  * The license and original author are listed below.
 | |
|  *
 | |
|  * Copyright (c) 2003 Sam Leffler, Errno Consulting
 | |
|  * Copyright (c) 2003 Global Technology Associates, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
| __FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $");
 | |
|  */
 | |
| 
 | |
| #include <linux/version.h>
 | |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
 | |
| #include <linux/config.h>
 | |
| #endif
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| /*
 | |
|  * SafeNet SafeXcel-1141 hardware crypto accelerator
 | |
|  */
 | |
| 
 | |
| #include <cryptodev.h>
 | |
| #include <uio.h>
 | |
| #include <safe/safereg.h>
 | |
| #include <safe/safevar.h>
 | |
| 
 | |
| #if 1
 | |
| #define	DPRINTF(a)	do { \
 | |
| 						if (debug) { \
 | |
| 							printk("%s: ", sc ? \
 | |
| 								device_get_nameunit(sc->sc_dev) : "safe"); \
 | |
| 							printk a; \
 | |
| 						} \
 | |
| 					} while (0)
 | |
| #else
 | |
| #define	DPRINTF(a)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * until we find a cleaner way, include the BSD md5/sha1 code
 | |
|  * here
 | |
|  */
 | |
| #define HMAC_HACK 1
 | |
| #ifdef HMAC_HACK
 | |
| #include <safe/hmachack.h>
 | |
| #include <safe/md5.h>
 | |
| #include <safe/md5.c>
 | |
| #include <safe/sha1.h>
 | |
| #include <safe/sha1.c>
 | |
| #endif /* HMAC_HACK */
 | |
| 
 | |
| /* add proc entry for this */
 | |
| struct safe_stats safestats;
 | |
| 
 | |
| #define debug safe_debug
 | |
| int safe_debug = 0;
 | |
| module_param(safe_debug, int, 0644);
 | |
| MODULE_PARM_DESC(safe_debug, "Enable debug");
 | |
| 
 | |
| static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
 | |
| static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
 | |
| #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
 | |
| static	void safe_rng_init(struct safe_softc *);
 | |
| int safe_rngbufsize = 8;		/* 32 bytes each read  */
 | |
| module_param(safe_rngbufsize, int, 0644);
 | |
| MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)");
 | |
| int safe_rngmaxalarm = 8;		/* max alarms before reset */
 | |
| module_param(safe_rngmaxalarm, int, 0644);
 | |
| MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset");
 | |
| #endif /* SAFE_NO_RNG */
 | |
| 
 | |
| static void safe_totalreset(struct safe_softc *sc);
 | |
| static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op);
 | |
| static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op);
 | |
| static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re);
 | |
| static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint);
 | |
| static int safe_kstart(struct safe_softc *sc);
 | |
| static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr);
 | |
| static void safe_kfeed(struct safe_softc *sc);
 | |
| static void safe_kpoll(unsigned long arg);
 | |
| static void safe_kload_reg(struct safe_softc *sc, u_int32_t off,
 | |
| 								u_int32_t len, struct crparam *n);
 | |
| 
 | |
| static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
 | |
| static	int safe_freesession(device_t, u_int64_t);
 | |
| static	int safe_process(device_t, struct cryptop *, int);
 | |
| 
 | |
| static device_method_t safe_methods = {
 | |
| 	/* crypto device methods */
 | |
| 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
 | |
| 	DEVMETHOD(cryptodev_freesession,safe_freesession),
 | |
| 	DEVMETHOD(cryptodev_process,	safe_process),
 | |
| 	DEVMETHOD(cryptodev_kprocess,	safe_kprocess),
 | |
| };
 | |
| 
 | |
| #define	READ_REG(sc,r)			readl((sc)->sc_base_addr + (r))
 | |
| #define WRITE_REG(sc,r,val)		writel((val), (sc)->sc_base_addr + (r))
 | |
| 
 | |
| #define SAFE_MAX_CHIPS 8
 | |
| static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS];
 | |
| 
 | |
| /*
 | |
|  * split our buffers up into safe DMAable byte fragments to avoid lockup
 | |
|  * bug in 1141 HW on rev 1.0.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| pci_map_linear(
 | |
| 	struct safe_softc *sc,
 | |
| 	struct safe_operand *buf,
 | |
| 	void *addr,
 | |
| 	int len)
 | |
| {
 | |
| 	dma_addr_t tmp;
 | |
| 	int chunk, tlen = len;
 | |
| 
 | |
| 	tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	buf->mapsize += len;
 | |
| 	while (len > 0) {
 | |
| 		chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len;
 | |
| 		buf->segs[buf->nsegs].ds_addr = tmp;
 | |
| 		buf->segs[buf->nsegs].ds_len  = chunk;
 | |
| 		buf->segs[buf->nsegs].ds_tlen = tlen;
 | |
| 		buf->nsegs++;
 | |
| 		tmp  += chunk;
 | |
| 		len  -= chunk;
 | |
| 		tlen = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * map in a given uio buffer (great on some arches :-)
 | |
|  */
 | |
| 
 | |
| static int
 | |
| pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio)
 | |
| {
 | |
| 	struct iovec *iov = uio->uio_iov;
 | |
| 	int n;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	buf->mapsize = 0;
 | |
| 	buf->nsegs = 0;
 | |
| 
 | |
| 	for (n = 0; n < uio->uio_iovcnt; n++) {
 | |
| 		pci_map_linear(sc, buf, iov->iov_base, iov->iov_len);
 | |
| 		iov++;
 | |
| 	}
 | |
| 
 | |
| 	/* identify this buffer by the first segment */
 | |
| 	buf->map = (void *) buf->segs[0].ds_addr;
 | |
| 	return(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * map in a given sk_buff
 | |
|  */
 | |
| 
 | |
| static int
 | |
| pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	buf->mapsize = 0;
 | |
| 	buf->nsegs = 0;
 | |
| 
 | |
| 	pci_map_linear(sc, buf, skb->data, skb_headlen(skb));
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 		pci_map_linear(sc, buf,
 | |
| 				page_address(skb_frag_page(&skb_shinfo(skb)->frags[i])) +
 | |
| 				                        skb_shinfo(skb)->frags[i].page_offset,
 | |
| 				skb_shinfo(skb)->frags[i].size);
 | |
| 	}
 | |
| 
 | |
| 	/* identify this buffer by the first segment */
 | |
| 	buf->map = (void *) buf->segs[0].ds_addr;
 | |
| 	return(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if 0 /* not needed at this time */
 | |
| static void
 | |
| pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 	for (i = 0; i < buf->nsegs; i++)
 | |
| 		pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
 | |
| 				buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf)
 | |
| {
 | |
| 	int i;
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 	for (i = 0; i < buf->nsegs; i++) {
 | |
| 		if (buf->segs[i].ds_tlen) {
 | |
| 			DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
 | |
| 			pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
 | |
| 					buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL);
 | |
| 			DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
 | |
| 		}
 | |
| 		buf->segs[i].ds_addr = 0;
 | |
| 		buf->segs[i].ds_len = 0;
 | |
| 		buf->segs[i].ds_tlen = 0;
 | |
| 	}
 | |
| 	buf->nsegs = 0;
 | |
| 	buf->mapsize = 0;
 | |
| 	buf->map = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * SafeXcel Interrupt routine
 | |
|  */
 | |
| static irqreturn_t
 | |
| #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
 | |
| safe_intr(int irq, void *arg)
 | |
| #else
 | |
| safe_intr(int irq, void *arg, struct pt_regs *regs)
 | |
| #endif
 | |
| {
 | |
| 	struct safe_softc *sc = arg;
 | |
| 	int stat;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	stat = READ_REG(sc, SAFE_HM_STAT);
 | |
| 
 | |
| 	DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat));
 | |
| 
 | |
| 	if (stat == 0)		/* shared irq, not for us */
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
 | |
| 
 | |
| 	if ((stat & SAFE_INT_PE_DDONE)) {
 | |
| 		/*
 | |
| 		 * Descriptor(s) done; scan the ring and
 | |
| 		 * process completed operations.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&sc->sc_ringmtx, flags);
 | |
| 		while (sc->sc_back != sc->sc_front) {
 | |
| 			struct safe_ringentry *re = sc->sc_back;
 | |
| 
 | |
| #ifdef SAFE_DEBUG
 | |
| 			if (debug) {
 | |
| 				safe_dump_ringstate(sc, __func__);
 | |
| 				safe_dump_request(sc, __func__, re);
 | |
| 			}
 | |
| #endif
 | |
| 			/*
 | |
| 			 * safe_process marks ring entries that were allocated
 | |
| 			 * but not used with a csr of zero.  This insures the
 | |
| 			 * ring front pointer never needs to be set backwards
 | |
| 			 * in the event that an entry is allocated but not used
 | |
| 			 * because of a setup error.
 | |
| 			 */
 | |
| 			DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr));
 | |
| 			if (re->re_desc.d_csr != 0) {
 | |
| 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) {
 | |
| 					DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__));
 | |
| 					break;
 | |
| 				}
 | |
| 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) {
 | |
| 					DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__));
 | |
| 					break;
 | |
| 				}
 | |
| 				sc->sc_nqchip--;
 | |
| 				safe_callback(sc, re);
 | |
| 			}
 | |
| 			if (++(sc->sc_back) == sc->sc_ringtop)
 | |
| 				sc->sc_back = sc->sc_ring;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if we got any DMA Error
 | |
| 	 */
 | |
| 	if (stat & SAFE_INT_PE_ERROR) {
 | |
| 		printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev),
 | |
| 				(int)READ_REG(sc, SAFE_PE_DMASTAT));
 | |
| 		safestats.st_dmaerr++;
 | |
| 		safe_totalreset(sc);
 | |
| #if 0
 | |
| 		safe_feed(sc);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
 | |
| 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
 | |
| 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
 | |
| 			sc->sc_needwakeup));
 | |
| 		sc->sc_needwakeup &= ~wakeup;
 | |
| 		crypto_unblock(sc->sc_cid, wakeup);
 | |
| 	}
 | |
| 	
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * safe_feed() - post a request to chip
 | |
|  */
 | |
| static void
 | |
| safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
 | |
| {
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| #ifdef SAFE_DEBUG
 | |
| 	if (debug) {
 | |
| 		safe_dump_ringstate(sc, __func__);
 | |
| 		safe_dump_request(sc, __func__, re);
 | |
| 	}
 | |
| #endif
 | |
| 	sc->sc_nqchip++;
 | |
| 	if (sc->sc_nqchip > safestats.st_maxqchip)
 | |
| 		safestats.st_maxqchip = sc->sc_nqchip;
 | |
| 	/* poke h/w to check descriptor ring, any value can be written */
 | |
| 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
 | |
| }
 | |
| 
 | |
| #define	N(a)	(sizeof(a) / sizeof (a[0]))
 | |
| static void
 | |
| safe_setup_enckey(struct safe_session *ses, caddr_t key)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
 | |
| 
 | |
| 	/* PE is little-endian, insure proper byte order */
 | |
| 	for (i = 0; i < N(ses->ses_key); i++)
 | |
| 		ses->ses_key[i] = htole32(ses->ses_key[i]);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
 | |
| {
 | |
| #ifdef HMAC_HACK
 | |
| 	MD5_CTX md5ctx;
 | |
| 	SHA1_CTX sha1ctx;
 | |
| 	int i;
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < klen; i++)
 | |
| 		key[i] ^= HMAC_IPAD_VAL;
 | |
| 
 | |
| 	if (algo == CRYPTO_MD5_HMAC) {
 | |
| 		MD5Init(&md5ctx);
 | |
| 		MD5Update(&md5ctx, key, klen);
 | |
| 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
 | |
| 		bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
 | |
| 	} else {
 | |
| 		SHA1Init(&sha1ctx);
 | |
| 		SHA1Update(&sha1ctx, key, klen);
 | |
| 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
 | |
| 		    SHA1_HMAC_BLOCK_LEN - klen);
 | |
| 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < klen; i++)
 | |
| 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
 | |
| 
 | |
| 	if (algo == CRYPTO_MD5_HMAC) {
 | |
| 		MD5Init(&md5ctx);
 | |
| 		MD5Update(&md5ctx, key, klen);
 | |
| 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
 | |
| 		bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
 | |
| 	} else {
 | |
| 		SHA1Init(&sha1ctx);
 | |
| 		SHA1Update(&sha1ctx, key, klen);
 | |
| 		SHA1Update(&sha1ctx, hmac_opad_buffer,
 | |
| 		    SHA1_HMAC_BLOCK_LEN - klen);
 | |
| 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < klen; i++)
 | |
| 		key[i] ^= HMAC_OPAD_VAL;
 | |
| 
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * this code prevents SHA working on a BE host,
 | |
| 	 * so it is obviously wrong.  I think the byte
 | |
| 	 * swap setup we do with the chip fixes this for us
 | |
| 	 */
 | |
| 
 | |
| 	/* PE is little-endian, insure proper byte order */
 | |
| 	for (i = 0; i < N(ses->ses_hminner); i++) {
 | |
| 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
 | |
| 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
 | |
| 	}
 | |
| #endif
 | |
| #else /* HMAC_HACK */
 | |
| 	printk("safe: md5/sha not implemented\n");
 | |
| #endif /* HMAC_HACK */
 | |
| }
 | |
| #undef N
 | |
| 
 | |
| /*
 | |
|  * Allocate a new 'session' and return an encoded session id.  'sidp'
 | |
|  * contains our registration id, and should contain an encoded session
 | |
|  * id on successful allocation.
 | |
|  */
 | |
| static int
 | |
| safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
 | |
| {
 | |
| 	struct safe_softc *sc = device_get_softc(dev);
 | |
| 	struct cryptoini *c, *encini = NULL, *macini = NULL;
 | |
| 	struct safe_session *ses = NULL;
 | |
| 	int sesn;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (sidp == NULL || cri == NULL || sc == NULL)
 | |
| 		return (EINVAL);
 | |
| 
 | |
| 	for (c = cri; c != NULL; c = c->cri_next) {
 | |
| 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
 | |
| 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
 | |
| 		    c->cri_alg == CRYPTO_NULL_HMAC) {
 | |
| 			if (macini)
 | |
| 				return (EINVAL);
 | |
| 			macini = c;
 | |
| 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
 | |
| 		    c->cri_alg == CRYPTO_3DES_CBC ||
 | |
| 		    c->cri_alg == CRYPTO_AES_CBC ||
 | |
| 		    c->cri_alg == CRYPTO_NULL_CBC) {
 | |
| 			if (encini)
 | |
| 				return (EINVAL);
 | |
| 			encini = c;
 | |
| 		} else
 | |
| 			return (EINVAL);
 | |
| 	}
 | |
| 	if (encini == NULL && macini == NULL)
 | |
| 		return (EINVAL);
 | |
| 	if (encini) {			/* validate key length */
 | |
| 		switch (encini->cri_alg) {
 | |
| 		case CRYPTO_DES_CBC:
 | |
| 			if (encini->cri_klen != 64)
 | |
| 				return (EINVAL);
 | |
| 			break;
 | |
| 		case CRYPTO_3DES_CBC:
 | |
| 			if (encini->cri_klen != 192)
 | |
| 				return (EINVAL);
 | |
| 			break;
 | |
| 		case CRYPTO_AES_CBC:
 | |
| 			if (encini->cri_klen != 128 &&
 | |
| 			    encini->cri_klen != 192 &&
 | |
| 			    encini->cri_klen != 256)
 | |
| 				return (EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sc->sc_sessions == NULL) {
 | |
| 		ses = sc->sc_sessions = (struct safe_session *)
 | |
| 			kmalloc(sizeof(struct safe_session), SLAB_ATOMIC);
 | |
| 		if (ses == NULL)
 | |
| 			return (ENOMEM);
 | |
| 		memset(ses, 0, sizeof(struct safe_session));
 | |
| 		sesn = 0;
 | |
| 		sc->sc_nsessions = 1;
 | |
| 	} else {
 | |
| 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
 | |
| 			if (sc->sc_sessions[sesn].ses_used == 0) {
 | |
| 				ses = &sc->sc_sessions[sesn];
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ses == NULL) {
 | |
| 			sesn = sc->sc_nsessions;
 | |
| 			ses = (struct safe_session *)
 | |
| 				kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC);
 | |
| 			if (ses == NULL)
 | |
| 				return (ENOMEM);
 | |
| 			memset(ses, 0, (sesn + 1) * sizeof(struct safe_session));
 | |
| 			bcopy(sc->sc_sessions, ses, sesn *
 | |
| 			    sizeof(struct safe_session));
 | |
| 			bzero(sc->sc_sessions, sesn *
 | |
| 			    sizeof(struct safe_session));
 | |
| 			kfree(sc->sc_sessions);
 | |
| 			sc->sc_sessions = ses;
 | |
| 			ses = &sc->sc_sessions[sesn];
 | |
| 			sc->sc_nsessions++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bzero(ses, sizeof(struct safe_session));
 | |
| 	ses->ses_used = 1;
 | |
| 
 | |
| 	if (encini) {
 | |
| 		ses->ses_klen = encini->cri_klen;
 | |
| 		if (encini->cri_key != NULL)
 | |
| 			safe_setup_enckey(ses, encini->cri_key);
 | |
| 	}
 | |
| 
 | |
| 	if (macini) {
 | |
| 		ses->ses_mlen = macini->cri_mlen;
 | |
| 		if (ses->ses_mlen == 0) {
 | |
| 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
 | |
| 				ses->ses_mlen = MD5_HASH_LEN;
 | |
| 			else
 | |
| 				ses->ses_mlen = SHA1_HASH_LEN;
 | |
| 		}
 | |
| 
 | |
| 		if (macini->cri_key != NULL) {
 | |
| 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
 | |
| 			    macini->cri_klen / 8);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deallocate a session.
 | |
|  */
 | |
| static int
 | |
| safe_freesession(device_t dev, u_int64_t tid)
 | |
| {
 | |
| 	struct safe_softc *sc = device_get_softc(dev);
 | |
| 	int session, ret;
 | |
| 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (sc == NULL)
 | |
| 		return (EINVAL);
 | |
| 
 | |
| 	session = SAFE_SESSION(sid);
 | |
| 	if (session < sc->sc_nsessions) {
 | |
| 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
 | |
| 		ret = 0;
 | |
| 	} else
 | |
| 		ret = EINVAL;
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| safe_process(device_t dev, struct cryptop *crp, int hint)
 | |
| {
 | |
| 	struct safe_softc *sc = device_get_softc(dev);
 | |
| 	int err = 0, i, nicealign, uniform;
 | |
| 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
 | |
| 	int bypass, oplen, ivsize;
 | |
| 	caddr_t iv;
 | |
| 	int16_t coffset;
 | |
| 	struct safe_session *ses;
 | |
| 	struct safe_ringentry *re;
 | |
| 	struct safe_sarec *sa;
 | |
| 	struct safe_pdesc *pd;
 | |
| 	u_int32_t cmd0, cmd1, staterec, rand_iv[4];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
 | |
| 		safestats.st_invalid++;
 | |
| 		return (EINVAL);
 | |
| 	}
 | |
| 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
 | |
| 		safestats.st_badsession++;
 | |
| 		return (EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&sc->sc_ringmtx, flags);
 | |
| 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
 | |
| 		safestats.st_ringfull++;
 | |
| 		sc->sc_needwakeup |= CRYPTO_SYMQ;
 | |
| 		spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
 | |
| 		return (ERESTART);
 | |
| 	}
 | |
| 	re = sc->sc_front;
 | |
| 
 | |
| 	staterec = re->re_sa.sa_staterec;	/* save */
 | |
| 	/* NB: zero everything but the PE descriptor */
 | |
| 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
 | |
| 	re->re_sa.sa_staterec = staterec;	/* restore */
 | |
| 
 | |
| 	re->re_crp = crp;
 | |
| 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
 | |
| 
 | |
| 	re->re_src.nsegs = 0;
 | |
| 	re->re_dst.nsegs = 0;
 | |
| 
 | |
| 	if (crp->crp_flags & CRYPTO_F_SKBUF) {
 | |
| 		re->re_src_skb = (struct sk_buff *)crp->crp_buf;
 | |
| 		re->re_dst_skb = (struct sk_buff *)crp->crp_buf;
 | |
| 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
 | |
| 		re->re_src_io = (struct uio *)crp->crp_buf;
 | |
| 		re->re_dst_io = (struct uio *)crp->crp_buf;
 | |
| 	} else {
 | |
| 		safestats.st_badflags++;
 | |
| 		err = EINVAL;
 | |
| 		goto errout;	/* XXX we don't handle contiguous blocks! */
 | |
| 	}
 | |
| 
 | |
| 	sa = &re->re_sa;
 | |
| 	ses = &sc->sc_sessions[re->re_sesn];
 | |
| 
 | |
| 	crd1 = crp->crp_desc;
 | |
| 	if (crd1 == NULL) {
 | |
| 		safestats.st_nodesc++;
 | |
| 		err = EINVAL;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	crd2 = crd1->crd_next;
 | |
| 
 | |
| 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
 | |
| 	cmd1 = 0;
 | |
| 	if (crd2 == NULL) {
 | |
| 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
 | |
| 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
 | |
| 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
 | |
| 			maccrd = crd1;
 | |
| 			enccrd = NULL;
 | |
| 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
 | |
| 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_AES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
 | |
| 			maccrd = NULL;
 | |
| 			enccrd = crd1;
 | |
| 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
 | |
| 		} else {
 | |
| 			safestats.st_badalg++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
 | |
| 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
 | |
| 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
 | |
| 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
 | |
| 			crd2->crd_alg == CRYPTO_3DES_CBC ||
 | |
| 		        crd2->crd_alg == CRYPTO_AES_CBC ||
 | |
| 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
 | |
| 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
 | |
| 			maccrd = crd1;
 | |
| 			enccrd = crd2;
 | |
| 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_AES_CBC ||
 | |
| 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
 | |
| 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
 | |
| 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
 | |
| 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
 | |
| 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
 | |
| 			enccrd = crd1;
 | |
| 			maccrd = crd2;
 | |
| 		} else {
 | |
| 			safestats.st_badalg++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
 | |
| 	}
 | |
| 
 | |
| 	if (enccrd) {
 | |
| 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
 | |
| 			safe_setup_enckey(ses, enccrd->crd_key);
 | |
| 
 | |
| 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_DES;
 | |
| 			cmd1 |= SAFE_SA_CMD1_CBC;
 | |
| 			ivsize = 2*sizeof(u_int32_t);
 | |
| 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_3DES;
 | |
| 			cmd1 |= SAFE_SA_CMD1_CBC;
 | |
| 			ivsize = 2*sizeof(u_int32_t);
 | |
| 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_AES;
 | |
| 			cmd1 |= SAFE_SA_CMD1_CBC;
 | |
| 			if (ses->ses_klen == 128)
 | |
| 			     cmd1 |=  SAFE_SA_CMD1_AES128;
 | |
| 			else if (ses->ses_klen == 192)
 | |
| 			     cmd1 |=  SAFE_SA_CMD1_AES192;
 | |
| 			else
 | |
| 			     cmd1 |=  SAFE_SA_CMD1_AES256;
 | |
| 			ivsize = 4*sizeof(u_int32_t);
 | |
| 		} else {
 | |
| 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
 | |
| 			ivsize = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup encrypt/decrypt state.  When using basic ops
 | |
| 		 * we can't use an inline IV because hash/crypt offset
 | |
| 		 * must be from the end of the IV to the start of the
 | |
| 		 * crypt data and this leaves out the preceding header
 | |
| 		 * from the hash calculation.  Instead we place the IV
 | |
| 		 * in the state record and set the hash/crypt offset to
 | |
| 		 * copy both the header+IV.
 | |
| 		 */
 | |
| 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
 | |
| 
 | |
| 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
 | |
| 				iv = enccrd->crd_iv;
 | |
| 			else
 | |
| 				read_random((iv = (caddr_t) &rand_iv[0]), sizeof(rand_iv));
 | |
| 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
 | |
| 				crypto_copyback(crp->crp_flags, crp->crp_buf,
 | |
| 				    enccrd->crd_inject, ivsize, iv);
 | |
| 			}
 | |
| 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
 | |
| 			/* make iv LE */
 | |
| 			for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
 | |
| 				re->re_sastate.sa_saved_iv[i] =
 | |
| 					cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
 | |
| 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
 | |
| 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
 | |
| 		} else {
 | |
| 			cmd0 |= SAFE_SA_CMD0_INBOUND;
 | |
| 
 | |
| 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
 | |
| 				bcopy(enccrd->crd_iv,
 | |
| 					re->re_sastate.sa_saved_iv, ivsize);
 | |
| 			} else {
 | |
| 				crypto_copydata(crp->crp_flags, crp->crp_buf,
 | |
| 				    enccrd->crd_inject, ivsize,
 | |
| 				    (caddr_t)re->re_sastate.sa_saved_iv);
 | |
| 			}
 | |
| 			/* make iv LE */
 | |
| 			for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
 | |
| 				re->re_sastate.sa_saved_iv[i] =
 | |
| 					cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
 | |
| 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * For basic encryption use the zero pad algorithm.
 | |
| 		 * This pads results to an 8-byte boundary and
 | |
| 		 * suppresses padding verification for inbound (i.e.
 | |
| 		 * decrypt) operations.
 | |
| 		 *
 | |
| 		 * NB: Not sure if the 8-byte pad boundary is a problem.
 | |
| 		 */
 | |
| 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
 | |
| 
 | |
| 		/* XXX assert key bufs have the same size */
 | |
| 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
 | |
| 	}
 | |
| 
 | |
| 	if (maccrd) {
 | |
| 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
 | |
| 			safe_setup_mackey(ses, maccrd->crd_alg,
 | |
| 			    maccrd->crd_key, maccrd->crd_klen / 8);
 | |
| 		}
 | |
| 
 | |
| 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_MD5;
 | |
| 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
 | |
| 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
 | |
| 			cmd0 |= SAFE_SA_CMD0_SHA1;
 | |
| 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
 | |
| 		} else {
 | |
| 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Digest data is loaded from the SA and the hash
 | |
| 		 * result is saved to the state block where we
 | |
| 		 * retrieve it for return to the caller.
 | |
| 		 */
 | |
| 		/* XXX assert digest bufs have the same size */
 | |
| 		bcopy(ses->ses_hminner, sa->sa_indigest,
 | |
| 			sizeof(sa->sa_indigest));
 | |
| 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
 | |
| 			sizeof(sa->sa_outdigest));
 | |
| 
 | |
| 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
 | |
| 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
 | |
| 	}
 | |
| 
 | |
| 	if (enccrd && maccrd) {
 | |
| 		/*
 | |
| 		 * The offset from hash data to the start of
 | |
| 		 * crypt data is the difference in the skips.
 | |
| 		 */
 | |
| 		bypass = maccrd->crd_skip;
 | |
| 		coffset = enccrd->crd_skip - maccrd->crd_skip;
 | |
| 		if (coffset < 0) {
 | |
| 			DPRINTF(("%s: hash does not precede crypt; "
 | |
| 				"mac skip %u enc skip %u\n",
 | |
| 				__func__, maccrd->crd_skip, enccrd->crd_skip));
 | |
| 			safestats.st_skipmismatch++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		oplen = enccrd->crd_skip + enccrd->crd_len;
 | |
| 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
 | |
| 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
 | |
| 				__func__, maccrd->crd_skip + maccrd->crd_len,
 | |
| 				oplen));
 | |
| 			safestats.st_lenmismatch++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| #ifdef SAFE_DEBUG
 | |
| 		if (debug) {
 | |
| 			printf("mac: skip %d, len %d, inject %d\n",
 | |
| 			    maccrd->crd_skip, maccrd->crd_len,
 | |
| 			    maccrd->crd_inject);
 | |
| 			printf("enc: skip %d, len %d, inject %d\n",
 | |
| 			    enccrd->crd_skip, enccrd->crd_len,
 | |
| 			    enccrd->crd_inject);
 | |
| 			printf("bypass %d coffset %d oplen %d\n",
 | |
| 				bypass, coffset, oplen);
 | |
| 		}
 | |
| #endif
 | |
| 		if (coffset & 3) {	/* offset must be 32-bit aligned */
 | |
| 			DPRINTF(("%s: coffset %u misaligned\n",
 | |
| 				__func__, coffset));
 | |
| 			safestats.st_coffmisaligned++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		coffset >>= 2;
 | |
| 		if (coffset > 255) {	/* offset must be <256 dwords */
 | |
| 			DPRINTF(("%s: coffset %u too big\n",
 | |
| 				__func__, coffset));
 | |
| 			safestats.st_cofftoobig++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Tell the hardware to copy the header to the output.
 | |
| 		 * The header is defined as the data from the end of
 | |
| 		 * the bypass to the start of data to be encrypted. 
 | |
| 		 * Typically this is the inline IV.  Note that you need
 | |
| 		 * to do this even if src+dst are the same; it appears
 | |
| 		 * that w/o this bit the crypted data is written
 | |
| 		 * immediately after the bypass data.
 | |
| 		 */
 | |
| 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
 | |
| 		/*
 | |
| 		 * Disable IP header mutable bit handling.  This is
 | |
| 		 * needed to get correct HMAC calculations.
 | |
| 		 */
 | |
| 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
 | |
| 	} else {
 | |
| 		if (enccrd) {
 | |
| 			bypass = enccrd->crd_skip;
 | |
| 			oplen = bypass + enccrd->crd_len;
 | |
| 		} else {
 | |
| 			bypass = maccrd->crd_skip;
 | |
| 			oplen = bypass + maccrd->crd_len;
 | |
| 		}
 | |
| 		coffset = 0;
 | |
| 	}
 | |
| 	/* XXX verify multiple of 4 when using s/g */
 | |
| 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
 | |
| 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
 | |
| 		safestats.st_bypasstoobig++;
 | |
| 		err = EINVAL;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 
 | |
| 	if (crp->crp_flags & CRYPTO_F_SKBUF) {
 | |
| 		if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) {
 | |
| 			safestats.st_noload++;
 | |
| 			err = ENOMEM;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
 | |
| 		if (pci_map_uio(sc, &re->re_src, re->re_src_io)) {
 | |
| 			safestats.st_noload++;
 | |
| 			err = ENOMEM;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	}
 | |
| 	nicealign = safe_dmamap_aligned(sc, &re->re_src);
 | |
| 	uniform = safe_dmamap_uniform(sc, &re->re_src);
 | |
| 
 | |
| 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
 | |
| 		nicealign, uniform, re->re_src.nsegs));
 | |
| 	if (re->re_src.nsegs > 1) {
 | |
| 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
 | |
| 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
 | |
| 		for (i = 0; i < re->re_src_nsegs; i++) {
 | |
| 			/* NB: no need to check if there's space */
 | |
| 			pd = sc->sc_spfree;
 | |
| 			if (++(sc->sc_spfree) == sc->sc_springtop)
 | |
| 				sc->sc_spfree = sc->sc_spring;
 | |
| 
 | |
| 			KASSERT((pd->pd_flags&3) == 0 ||
 | |
| 				(pd->pd_flags&3) == SAFE_PD_DONE,
 | |
| 				("bogus source particle descriptor; flags %x",
 | |
| 				pd->pd_flags));
 | |
| 			pd->pd_addr = re->re_src_segs[i].ds_addr;
 | |
| 			pd->pd_size = re->re_src_segs[i].ds_len;
 | |
| 			pd->pd_flags = SAFE_PD_READY;
 | |
| 		}
 | |
| 		cmd0 |= SAFE_SA_CMD0_IGATHER;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No need for gather, reference the operand directly.
 | |
| 		 */
 | |
| 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
 | |
| 	}
 | |
| 
 | |
| 	if (enccrd == NULL && maccrd != NULL) {
 | |
| 		/*
 | |
| 		 * Hash op; no destination needed.
 | |
| 		 */
 | |
| 	} else {
 | |
| 		if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) {
 | |
| 			if (!nicealign) {
 | |
| 				safestats.st_iovmisaligned++;
 | |
| 				err = EINVAL;
 | |
| 				goto errout;
 | |
| 			}
 | |
| 			if (uniform != 1) {
 | |
| 				device_printf(sc->sc_dev, "!uniform source\n");
 | |
| 				if (!uniform) {
 | |
| 					/*
 | |
| 					 * There's no way to handle the DMA
 | |
| 					 * requirements with this uio.  We
 | |
| 					 * could create a separate DMA area for
 | |
| 					 * the result and then copy it back,
 | |
| 					 * but for now we just bail and return
 | |
| 					 * an error.  Note that uio requests
 | |
| 					 * > SAFE_MAX_DSIZE are handled because
 | |
| 					 * the DMA map and segment list for the
 | |
| 					 * destination wil result in a
 | |
| 					 * destination particle list that does
 | |
| 					 * the necessary scatter DMA.
 | |
| 					 */ 
 | |
| 					safestats.st_iovnotuniform++;
 | |
| 					err = EINVAL;
 | |
| 					goto errout;
 | |
| 				}
 | |
| 			} else
 | |
| 				re->re_dst = re->re_src;
 | |
| 		} else {
 | |
| 			safestats.st_badflags++;
 | |
| 			err = EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 
 | |
| 		if (re->re_dst.nsegs > 1) {
 | |
| 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
 | |
| 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
 | |
| 			for (i = 0; i < re->re_dst_nsegs; i++) {
 | |
| 				pd = sc->sc_dpfree;
 | |
| 				KASSERT((pd->pd_flags&3) == 0 ||
 | |
| 					(pd->pd_flags&3) == SAFE_PD_DONE,
 | |
| 					("bogus dest particle descriptor; flags %x",
 | |
| 						pd->pd_flags));
 | |
| 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
 | |
| 					sc->sc_dpfree = sc->sc_dpring;
 | |
| 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
 | |
| 				pd->pd_flags = SAFE_PD_READY;
 | |
| 			}
 | |
| 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * No need for scatter, reference the operand directly.
 | |
| 			 */
 | |
| 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All done with setup; fillin the SA command words
 | |
| 	 * and the packet engine descriptor.  The operation
 | |
| 	 * is now ready for submission to the hardware.
 | |
| 	 */
 | |
| 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
 | |
| 	sa->sa_cmd1 = cmd1
 | |
| 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
 | |
| 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
 | |
| 		    | SAFE_SA_CMD1_SRPCI
 | |
| 		    ;
 | |
| 	/*
 | |
| 	 * NB: the order of writes is important here.  In case the
 | |
| 	 * chip is scanning the ring because of an outstanding request
 | |
| 	 * it might nab this one too.  In that case we need to make
 | |
| 	 * sure the setup is complete before we write the length
 | |
| 	 * field of the descriptor as it signals the descriptor is
 | |
| 	 * ready for processing.
 | |
| 	 */
 | |
| 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
 | |
| 	if (maccrd)
 | |
| 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
 | |
| 	wmb();
 | |
| 	re->re_desc.d_len = oplen
 | |
| 			  | SAFE_PE_LEN_READY
 | |
| 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
 | |
| 			  ;
 | |
| 
 | |
| 	safestats.st_ipackets++;
 | |
| 	safestats.st_ibytes += oplen;
 | |
| 
 | |
| 	if (++(sc->sc_front) == sc->sc_ringtop)
 | |
| 		sc->sc_front = sc->sc_ring;
 | |
| 
 | |
| 	/* XXX honor batching */
 | |
| 	safe_feed(sc, re);
 | |
| 	spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
 | |
| 	return (0);
 | |
| 
 | |
| errout:
 | |
| 	if (re->re_src.map != re->re_dst.map)
 | |
| 		pci_unmap_operand(sc, &re->re_dst);
 | |
| 	if (re->re_src.map)
 | |
| 		pci_unmap_operand(sc, &re->re_src);
 | |
| 	spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
 | |
| 	if (err != ERESTART) {
 | |
| 		crp->crp_etype = err;
 | |
| 		crypto_done(crp);
 | |
| 	} else {
 | |
| 		sc->sc_needwakeup |= CRYPTO_SYMQ;
 | |
| 	}
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
 | |
| {
 | |
| 	struct cryptop *crp = (struct cryptop *)re->re_crp;
 | |
| 	struct cryptodesc *crd;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	safestats.st_opackets++;
 | |
| 	safestats.st_obytes += re->re_dst.mapsize;
 | |
| 
 | |
| 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
 | |
| 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
 | |
| 			re->re_desc.d_csr,
 | |
| 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
 | |
| 		safestats.st_peoperr++;
 | |
| 		crp->crp_etype = EIO;		/* something more meaningful? */
 | |
| 	}
 | |
| 
 | |
| 	if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map)
 | |
| 		pci_unmap_operand(sc, &re->re_dst);
 | |
| 	pci_unmap_operand(sc, &re->re_src);
 | |
| 
 | |
| 	/* 
 | |
| 	 * If result was written to a differet mbuf chain, swap
 | |
| 	 * it in as the return value and reclaim the original.
 | |
| 	 */
 | |
| 	if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) {
 | |
| 		device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n");
 | |
| 		/* kfree_skb(skb) */
 | |
| 		/* crp->crp_buf = (caddr_t)re->re_dst_skb */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
 | |
| 		/* copy out ICV result */
 | |
| 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
 | |
| 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
 | |
| 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
 | |
| 			    crd->crd_alg == CRYPTO_NULL_HMAC))
 | |
| 				continue;
 | |
| 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
 | |
| 				/*
 | |
| 				 * SHA-1 ICV's are byte-swapped; fix 'em up
 | |
| 				 * before copy them to their destination.
 | |
| 				 */
 | |
| 				re->re_sastate.sa_saved_indigest[0] =
 | |
| 					cpu_to_be32(re->re_sastate.sa_saved_indigest[0]);
 | |
| 				re->re_sastate.sa_saved_indigest[1] = 
 | |
| 					cpu_to_be32(re->re_sastate.sa_saved_indigest[1]);
 | |
| 				re->re_sastate.sa_saved_indigest[2] =
 | |
| 					cpu_to_be32(re->re_sastate.sa_saved_indigest[2]);
 | |
| 			} else {
 | |
| 				re->re_sastate.sa_saved_indigest[0] =
 | |
| 					cpu_to_le32(re->re_sastate.sa_saved_indigest[0]);
 | |
| 				re->re_sastate.sa_saved_indigest[1] = 
 | |
| 					cpu_to_le32(re->re_sastate.sa_saved_indigest[1]);
 | |
| 				re->re_sastate.sa_saved_indigest[2] =
 | |
| 					cpu_to_le32(re->re_sastate.sa_saved_indigest[2]);
 | |
| 			}
 | |
| 			crypto_copyback(crp->crp_flags, crp->crp_buf,
 | |
| 			    crd->crd_inject,
 | |
| 			    sc->sc_sessions[re->re_sesn].ses_mlen,
 | |
| 			    (caddr_t)re->re_sastate.sa_saved_indigest);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	crypto_done(crp);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
 | |
| #define	SAFE_RNG_MAXWAIT	1000
 | |
| 
 | |
| static void
 | |
| safe_rng_init(struct safe_softc *sc)
 | |
| {
 | |
| 	u_int32_t w, v;
 | |
| 	int i;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
 | |
| 	/* use default value according to the manual */
 | |
| 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
 | |
| 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
 | |
| 	 * is brought out of reset the ready status flag does not
 | |
| 	 * work until the RNG has finished its internal initialization.
 | |
| 	 *
 | |
| 	 * So in order to determine the device is through its
 | |
| 	 * initialization we must read the data register, using the
 | |
| 	 * status reg in the read in case it is initialized.  Then read
 | |
| 	 * the data register until it changes from the first read.
 | |
| 	 * Once it changes read the data register until it changes
 | |
| 	 * again.  At this time the RNG is considered initialized. 
 | |
| 	 * This could take between 750ms - 1000ms in time.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	w = READ_REG(sc, SAFE_RNG_OUT);
 | |
| 	do {
 | |
| 		v = READ_REG(sc, SAFE_RNG_OUT);
 | |
| 		if (v != w) {
 | |
| 			w = v;
 | |
| 			break;
 | |
| 		}
 | |
| 		DELAY(10);
 | |
| 	} while (++i < SAFE_RNG_MAXWAIT);
 | |
| 
 | |
| 	/* Wait Until data changes again */
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		v = READ_REG(sc, SAFE_RNG_OUT);
 | |
| 		if (v != w)
 | |
| 			break;
 | |
| 		DELAY(10);
 | |
| 	} while (++i < SAFE_RNG_MAXWAIT);
 | |
| }
 | |
| 
 | |
| static __inline void
 | |
| safe_rng_disable_short_cycle(struct safe_softc *sc)
 | |
| {
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_RNG_CTRL,
 | |
| 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
 | |
| }
 | |
| 
 | |
| static __inline void
 | |
| safe_rng_enable_short_cycle(struct safe_softc *sc)
 | |
| {
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_RNG_CTRL, 
 | |
| 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
 | |
| }
 | |
| 
 | |
| static __inline u_int32_t
 | |
| safe_rng_read(struct safe_softc *sc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
 | |
| 		;
 | |
| 	return READ_REG(sc, SAFE_RNG_OUT);
 | |
| }
 | |
| 
 | |
| static int
 | |
| safe_read_random(void *arg, u_int32_t *buf, int maxwords)
 | |
| {
 | |
| 	struct safe_softc *sc = (struct safe_softc *) arg;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 	
 | |
| 	safestats.st_rng++;
 | |
| 	/*
 | |
| 	 * Fetch the next block of data.
 | |
| 	 */
 | |
| 	if (maxwords > safe_rngbufsize)
 | |
| 		maxwords = safe_rngbufsize;
 | |
| 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
 | |
| 		maxwords = SAFE_RNG_MAXBUFSIZ;
 | |
| retry:
 | |
| 	/* read as much as we can */
 | |
| 	for (rc = 0; rc < maxwords; rc++) {
 | |
| 		if (READ_REG(sc, SAFE_RNG_STAT) != 0)
 | |
| 			break;
 | |
| 		buf[rc] = READ_REG(sc, SAFE_RNG_OUT);
 | |
| 	}
 | |
| 	if (rc == 0)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Check the comparator alarm count and reset the h/w if
 | |
| 	 * it exceeds our threshold.  This guards against the
 | |
| 	 * hardware oscillators resonating with external signals.
 | |
| 	 */
 | |
| 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
 | |
| 		u_int32_t freq_inc, w;
 | |
| 
 | |
| 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
 | |
| 			(unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
 | |
| 		safestats.st_rngalarm++;
 | |
| 		safe_rng_enable_short_cycle(sc);
 | |
| 		freq_inc = 18;
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			w = READ_REG(sc, SAFE_RNG_CNFG);
 | |
| 			freq_inc = ((w + freq_inc) & 0x3fL);
 | |
| 			w = ((w & ~0x3fL) | freq_inc);
 | |
| 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
 | |
| 
 | |
| 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 | |
| 
 | |
| 			(void) safe_rng_read(sc);
 | |
| 			DELAY(25);
 | |
| 
 | |
| 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
 | |
| 				safe_rng_disable_short_cycle(sc);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			freq_inc = 1;
 | |
| 		}
 | |
| 		safe_rng_disable_short_cycle(sc);
 | |
| 	} else
 | |
| 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
 | |
| 
 | |
| 	return(rc);
 | |
| }
 | |
| #endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Resets the board.  Values in the regesters are left as is
 | |
|  * from the reset (i.e. initial values are assigned elsewhere).
 | |
|  */
 | |
| static void
 | |
| safe_reset_board(struct safe_softc *sc)
 | |
| {
 | |
| 	u_int32_t v;
 | |
| 	/*
 | |
| 	 * Reset the device.  The manual says no delay
 | |
| 	 * is needed between marking and clearing reset.
 | |
| 	 */
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
 | |
| 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
 | |
| 		 SAFE_PE_DMACFG_SGRESET);
 | |
| 	WRITE_REG(sc, SAFE_PE_DMACFG, v
 | |
| 				    | SAFE_PE_DMACFG_PERESET
 | |
| 				    | SAFE_PE_DMACFG_PDRRESET
 | |
| 				    | SAFE_PE_DMACFG_SGRESET);
 | |
| 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize registers we need to touch only once.
 | |
|  */
 | |
| static void
 | |
| safe_init_board(struct safe_softc *sc)
 | |
| {
 | |
| 	u_int32_t v, dwords;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	v = READ_REG(sc, SAFE_PE_DMACFG);
 | |
| 	v &=~ (   SAFE_PE_DMACFG_PEMODE
 | |
| 			| SAFE_PE_DMACFG_FSENA		/* failsafe enable */
 | |
| 			| SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
 | |
| 			| SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
 | |
| 			| SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
 | |
| 			| SAFE_PE_DMACFG_ESPDESC	/* endian-swap part. desc's */
 | |
| 			| SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
 | |
| 			| SAFE_PE_DMACFG_ESPACKET	/* swap the packet data */
 | |
| 		  );
 | |
| 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
 | |
| 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
 | |
| 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
 | |
| 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
 | |
| 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
 | |
| 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
 | |
| #if 0
 | |
| 	  |  SAFE_PE_DMACFG_ESPACKET    /* swap the packet data */
 | |
| #endif
 | |
| 	  ;
 | |
| 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	/* tell the safenet that we are 4321 and not 1234 */
 | |
| 	WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b);
 | |
| #endif
 | |
| 
 | |
| 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
 | |
| 		/*
 | |
| 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
 | |
| 		 * "target mode transfers" done while the chip is DMA'ing
 | |
| 		 * >1020 bytes cause the hardware to lockup.  To avoid this
 | |
| 		 * we reduce the max PCI transfer size and use small source
 | |
| 		 * particle descriptors (<= 256 bytes).
 | |
| 		 */
 | |
| 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
 | |
| 		device_printf(sc->sc_dev,
 | |
| 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
 | |
| 			(unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff),
 | |
| 			(unsigned) SAFE_REV_MAJ(sc->sc_chiprev),
 | |
| 			(unsigned) SAFE_REV_MIN(sc->sc_chiprev));
 | |
| 		sc->sc_max_dsize = 256;
 | |
| 	} else {
 | |
| 		sc->sc_max_dsize = SAFE_MAX_DSIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* NB: operands+results are overlaid */
 | |
| 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
 | |
| 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
 | |
| 	/*
 | |
| 	 * Configure ring entry size and number of items in the ring.
 | |
| 	 */
 | |
| 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
 | |
| 		("PE ring entry not 32-bit aligned!"));
 | |
| 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
 | |
| 	WRITE_REG(sc, SAFE_PE_RINGCFG,
 | |
| 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
 | |
| 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
 | |
| 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
 | |
| 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
 | |
| 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
 | |
| 	/*
 | |
| 	 * NB: destination particles are fixed size.  We use
 | |
| 	 *     an mbuf cluster and require all results go to
 | |
| 	 *     clusters or smaller.
 | |
| 	 */
 | |
| 	WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize);
 | |
| 
 | |
| 	/* it's now safe to enable PE mode, do it */
 | |
| 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure hardware to use level-triggered interrupts and
 | |
| 	 * to interrupt after each descriptor is processed.
 | |
| 	 */
 | |
| 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
 | |
| 	WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff);
 | |
| 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
 | |
| 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Clean up after a chip crash.
 | |
|  * It is assumed that the caller in splimp()
 | |
|  */
 | |
| static void
 | |
| safe_cleanchip(struct safe_softc *sc)
 | |
| {
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (sc->sc_nqchip != 0) {
 | |
| 		struct safe_ringentry *re = sc->sc_back;
 | |
| 
 | |
| 		while (re != sc->sc_front) {
 | |
| 			if (re->re_desc.d_csr != 0)
 | |
| 				safe_free_entry(sc, re);
 | |
| 			if (++re == sc->sc_ringtop)
 | |
| 				re = sc->sc_ring;
 | |
| 		}
 | |
| 		sc->sc_back = re;
 | |
| 		sc->sc_nqchip = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free a safe_q
 | |
|  * It is assumed that the caller is within splimp().
 | |
|  */
 | |
| static int
 | |
| safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
 | |
| {
 | |
| 	struct cryptop *crp;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	/*
 | |
| 	 * Free header MCR
 | |
| 	 */
 | |
| 	if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb))
 | |
| #ifdef NOTYET
 | |
| 		m_freem(re->re_dst_m);
 | |
| #else
 | |
| 		printk("%s,%d: SKB not supported\n", __FILE__, __LINE__);
 | |
| #endif
 | |
| 
 | |
| 	crp = (struct cryptop *)re->re_crp;
 | |
| 	
 | |
| 	re->re_desc.d_csr = 0;
 | |
| 	
 | |
| 	crp->crp_etype = EFAULT;
 | |
| 	crypto_done(crp);
 | |
| 	return(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routine to reset the chip and clean up.
 | |
|  * It is assumed that the caller is in splimp()
 | |
|  */
 | |
| static void
 | |
| safe_totalreset(struct safe_softc *sc)
 | |
| {
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	safe_reset_board(sc);
 | |
| 	safe_init_board(sc);
 | |
| 	safe_cleanchip(sc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the operand suitable aligned for direct DMA.  Each
 | |
|  * segment must be aligned on a 32-bit boundary and all
 | |
|  * but the last segment must be a multiple of 4 bytes.
 | |
|  */
 | |
| static int
 | |
| safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	for (i = 0; i < op->nsegs; i++) {
 | |
| 		if (op->segs[i].ds_addr & 3)
 | |
| 			return (0);
 | |
| 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
 | |
| 			return (0);
 | |
| 	}
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the operand suitable for direct DMA as the destination
 | |
|  * of an operation.  The hardware requires that each ``particle''
 | |
|  * but the last in an operation result have the same size.  We
 | |
|  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
 | |
|  * 0 if some segment is not a multiple of of this size, 1 if all
 | |
|  * segments are exactly this size, or 2 if segments are at worst
 | |
|  * a multple of this size.
 | |
|  */
 | |
| static int
 | |
| safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op)
 | |
| {
 | |
| 	int result = 1;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (op->nsegs > 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < op->nsegs-1; i++) {
 | |
| 			if (op->segs[i].ds_len % sc->sc_max_dsize)
 | |
| 				return (0);
 | |
| 			if (op->segs[i].ds_len != sc->sc_max_dsize)
 | |
| 				result = 2;
 | |
| 		}
 | |
| 	}
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| safe_kprocess(device_t dev, struct cryptkop *krp, int hint)
 | |
| {
 | |
| 	struct safe_softc *sc = device_get_softc(dev);
 | |
| 	struct safe_pkq *q;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (sc == NULL) {
 | |
| 		krp->krp_status = EINVAL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (krp->krp_op != CRK_MOD_EXP) {
 | |
| 		krp->krp_status = EOPNOTSUPP;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
 | |
| 	if (q == NULL) {
 | |
| 		krp->krp_status = ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	memset(q, 0, sizeof(*q));
 | |
| 	q->pkq_krp = krp;
 | |
| 	INIT_LIST_HEAD(&q->pkq_list);
 | |
| 
 | |
| 	spin_lock_irqsave(&sc->sc_pkmtx, flags);
 | |
| 	list_add_tail(&q->pkq_list, &sc->sc_pkq);
 | |
| 	safe_kfeed(sc);
 | |
| 	spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
 | |
| 	return (0);
 | |
| 
 | |
| err:
 | |
| 	crypto_kdone(krp);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| #define	SAFE_CRK_PARAM_BASE	0
 | |
| #define	SAFE_CRK_PARAM_EXP	1
 | |
| #define	SAFE_CRK_PARAM_MOD	2
 | |
| 
 | |
| static int
 | |
| safe_kstart(struct safe_softc *sc)
 | |
| {
 | |
| 	struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp;
 | |
| 	int exp_bits, mod_bits, base_bits;
 | |
| 	u_int32_t op, a_off, b_off, c_off, d_off;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (krp->krp_iparams < 3 || krp->krp_oparams != 1) {
 | |
| 		krp->krp_status = EINVAL;
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]);
 | |
| 	if (base_bits > 2048)
 | |
| 		goto too_big;
 | |
| 	if (base_bits <= 0)		/* 5. base not zero */
 | |
| 		goto too_small;
 | |
| 
 | |
| 	exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]);
 | |
| 	if (exp_bits > 2048)
 | |
| 		goto too_big;
 | |
| 	if (exp_bits <= 0)		/* 1. exponent word length > 0 */
 | |
| 		goto too_small;		/* 4. exponent not zero */
 | |
| 
 | |
| 	mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]);
 | |
| 	if (mod_bits > 2048)
 | |
| 		goto too_big;
 | |
| 	if (mod_bits <= 32)		/* 2. modulus word length > 1 */
 | |
| 		goto too_small;		/* 8. MSW of modulus != zero */
 | |
| 	if (mod_bits < exp_bits)	/* 3 modulus len >= exponent len */
 | |
| 		goto too_small;
 | |
| 	if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0)
 | |
| 		goto bad_domain;	/* 6. modulus is odd */
 | |
| 	if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits)
 | |
| 		goto too_small;		/* make sure result will fit */
 | |
| 
 | |
| 	/* 7. modulus > base */
 | |
| 	if (mod_bits < base_bits)
 | |
| 		goto too_small;
 | |
| 	if (mod_bits == base_bits) {
 | |
| 		u_int8_t *basep, *modp;
 | |
| 		int i;
 | |
| 
 | |
| 		basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p +
 | |
| 		    ((base_bits + 7) / 8) - 1;
 | |
| 		modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p +
 | |
| 		    ((mod_bits + 7) / 8) - 1;
 | |
| 		
 | |
| 		for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) {
 | |
| 			if (*modp < *basep)
 | |
| 				goto too_small;
 | |
| 			if (*modp > *basep)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* And on the 9th step, he rested. */
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32);
 | |
| 	WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32);
 | |
| 	if (mod_bits > 1024) {
 | |
| 		op = SAFE_PK_FUNC_EXP4;
 | |
| 		a_off = 0x000;
 | |
| 		b_off = 0x100;
 | |
| 		c_off = 0x200;
 | |
| 		d_off = 0x300;
 | |
| 	} else {
 | |
| 		op = SAFE_PK_FUNC_EXP16;
 | |
| 		a_off = 0x000;
 | |
| 		b_off = 0x080;
 | |
| 		c_off = 0x100;
 | |
| 		d_off = 0x180;
 | |
| 	}
 | |
| 	sc->sc_pk_reslen = b_off - a_off;
 | |
| 	sc->sc_pk_resoff = d_off;
 | |
| 
 | |
| 	/* A is exponent, B is modulus, C is base, D is result */
 | |
| 	safe_kload_reg(sc, a_off, b_off - a_off,
 | |
| 	    &krp->krp_param[SAFE_CRK_PARAM_EXP]);
 | |
| 	WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2);
 | |
| 	safe_kload_reg(sc, b_off, b_off - a_off,
 | |
| 	    &krp->krp_param[SAFE_CRK_PARAM_MOD]);
 | |
| 	WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2);
 | |
| 	safe_kload_reg(sc, c_off, b_off - a_off,
 | |
| 	    &krp->krp_param[SAFE_CRK_PARAM_BASE]);
 | |
| 	WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2);
 | |
| 	WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2);
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN);
 | |
| 
 | |
| 	return (0);
 | |
| 
 | |
| too_big:
 | |
| 	krp->krp_status = E2BIG;
 | |
| 	return (1);
 | |
| too_small:
 | |
| 	krp->krp_status = ERANGE;
 | |
| 	return (1);
 | |
| bad_domain:
 | |
| 	krp->krp_status = EDOM;
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| static int
 | |
| safe_ksigbits(struct safe_softc *sc, struct crparam *cr)
 | |
| {
 | |
| 	u_int plen = (cr->crp_nbits + 7) / 8;
 | |
| 	int i, sig = plen * 8;
 | |
| 	u_int8_t c, *p = cr->crp_p;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	for (i = plen - 1; i >= 0; i--) {
 | |
| 		c = p[i];
 | |
| 		if (c != 0) {
 | |
| 			while ((c & 0x80) == 0) {
 | |
| 				sig--;
 | |
| 				c <<= 1;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		sig -= 8;
 | |
| 	}
 | |
| 	return (sig);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_kfeed(struct safe_softc *sc)
 | |
| {
 | |
| 	struct safe_pkq *q, *tmp;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL)
 | |
| 		return;
 | |
| 	if (sc->sc_pkq_cur != NULL)
 | |
| 		return;
 | |
| 	list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) {
 | |
| 		sc->sc_pkq_cur = q;
 | |
| 		list_del(&q->pkq_list);
 | |
| 		if (safe_kstart(sc) != 0) {
 | |
| 			crypto_kdone(q->pkq_krp);
 | |
| 			kfree(q);
 | |
| 			sc->sc_pkq_cur = NULL;
 | |
| 		} else {
 | |
| 			/* op started, start polling */
 | |
| 			mod_timer(&sc->sc_pkto, jiffies + 1);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_kpoll(unsigned long arg)
 | |
| {
 | |
| 	struct safe_softc *sc = NULL;
 | |
| 	struct safe_pkq *q;
 | |
| 	struct crparam *res;
 | |
| 	int i;
 | |
| 	u_int32_t buf[64];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (arg >= SAFE_MAX_CHIPS)
 | |
| 		return;
 | |
| 	sc = safe_chip_idx[arg];
 | |
| 	if (!sc) {
 | |
| 		DPRINTF(("%s() - bad callback\n", __FUNCTION__));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&sc->sc_pkmtx, flags);
 | |
| 	if (sc->sc_pkq_cur == NULL)
 | |
| 		goto out;
 | |
| 	if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) {
 | |
| 		/* still running, check back later */
 | |
| 		mod_timer(&sc->sc_pkto, jiffies + 1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	q = sc->sc_pkq_cur;
 | |
| 	res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams];
 | |
| 	bzero(buf, sizeof(buf));
 | |
| 	bzero(res->crp_p, (res->crp_nbits + 7) / 8);
 | |
| 	for (i = 0; i < sc->sc_pk_reslen >> 2; i++)
 | |
| 		buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START +
 | |
| 		    sc->sc_pk_resoff + (i << 2)));
 | |
| 	bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8);
 | |
| 	/*
 | |
| 	 * reduce the bits that need copying if possible
 | |
| 	 */
 | |
| 	res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8);
 | |
| 	res->crp_nbits = safe_ksigbits(sc, res);
 | |
| 
 | |
| 	for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4)
 | |
| 		WRITE_REG(sc, i, 0);
 | |
| 
 | |
| 	crypto_kdone(q->pkq_krp);
 | |
| 	kfree(q);
 | |
| 	sc->sc_pkq_cur = NULL;
 | |
| 
 | |
| 	safe_kfeed(sc);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len,
 | |
|     struct crparam *n)
 | |
| {
 | |
| 	u_int32_t buf[64], i;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	bzero(buf, sizeof(buf));
 | |
| 	bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8);
 | |
| 
 | |
| 	for (i = 0; i < len >> 2; i++)
 | |
| 		WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2),
 | |
| 		    cpu_to_le32(buf[i]));
 | |
| }
 | |
| 
 | |
| #ifdef SAFE_DEBUG
 | |
| static void
 | |
| safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
 | |
| {
 | |
| 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
 | |
| 		, tag
 | |
| 		, READ_REG(sc, SAFE_DMA_ENDIAN)
 | |
| 		, READ_REG(sc, SAFE_DMA_SRCADDR)
 | |
| 		, READ_REG(sc, SAFE_DMA_DSTADDR)
 | |
| 		, READ_REG(sc, SAFE_DMA_STAT)
 | |
| 	);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_dump_intrstate(struct safe_softc *sc, const char *tag)
 | |
| {
 | |
| 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
 | |
| 		, tag
 | |
| 		, READ_REG(sc, SAFE_HI_CFG)
 | |
| 		, READ_REG(sc, SAFE_HI_MASK)
 | |
| 		, READ_REG(sc, SAFE_HI_DESC_CNT)
 | |
| 		, READ_REG(sc, SAFE_HU_STAT)
 | |
| 		, READ_REG(sc, SAFE_HM_STAT)
 | |
| 	);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_dump_ringstate(struct safe_softc *sc, const char *tag)
 | |
| {
 | |
| 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
 | |
| 
 | |
| 	/* NB: assume caller has lock on ring */
 | |
| 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
 | |
| 		tag,
 | |
| 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
 | |
| 		(unsigned long)(sc->sc_back - sc->sc_ring),
 | |
| 		(unsigned long)(sc->sc_front - sc->sc_ring));
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
 | |
| {
 | |
| 	int ix, nsegs;
 | |
| 
 | |
| 	ix = re - sc->sc_ring;
 | |
| 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
 | |
| 		, tag
 | |
| 		, re, ix
 | |
| 		, re->re_desc.d_csr
 | |
| 		, re->re_desc.d_src
 | |
| 		, re->re_desc.d_dst
 | |
| 		, re->re_desc.d_sa
 | |
| 		, re->re_desc.d_len
 | |
| 	);
 | |
| 	if (re->re_src.nsegs > 1) {
 | |
| 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
 | |
| 			sizeof(struct safe_pdesc);
 | |
| 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
 | |
| 			printf(" spd[%u] %p: %p size %u flags %x"
 | |
| 				, ix, &sc->sc_spring[ix]
 | |
| 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
 | |
| 				, sc->sc_spring[ix].pd_size
 | |
| 				, sc->sc_spring[ix].pd_flags
 | |
| 			);
 | |
| 			if (sc->sc_spring[ix].pd_size == 0)
 | |
| 				printf(" (zero!)");
 | |
| 			printf("\n");
 | |
| 			if (++ix == SAFE_TOTAL_SPART)
 | |
| 				ix = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (re->re_dst.nsegs > 1) {
 | |
| 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
 | |
| 			sizeof(struct safe_pdesc);
 | |
| 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
 | |
| 			printf(" dpd[%u] %p: %p flags %x\n"
 | |
| 				, ix, &sc->sc_dpring[ix]
 | |
| 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
 | |
| 				, sc->sc_dpring[ix].pd_flags
 | |
| 			);
 | |
| 			if (++ix == SAFE_TOTAL_DPART)
 | |
| 				ix = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
 | |
| 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
 | |
| 	printf("sa: key %x %x %x %x %x %x %x %x\n"
 | |
| 		, re->re_sa.sa_key[0]
 | |
| 		, re->re_sa.sa_key[1]
 | |
| 		, re->re_sa.sa_key[2]
 | |
| 		, re->re_sa.sa_key[3]
 | |
| 		, re->re_sa.sa_key[4]
 | |
| 		, re->re_sa.sa_key[5]
 | |
| 		, re->re_sa.sa_key[6]
 | |
| 		, re->re_sa.sa_key[7]
 | |
| 	);
 | |
| 	printf("sa: indigest %x %x %x %x %x\n"
 | |
| 		, re->re_sa.sa_indigest[0]
 | |
| 		, re->re_sa.sa_indigest[1]
 | |
| 		, re->re_sa.sa_indigest[2]
 | |
| 		, re->re_sa.sa_indigest[3]
 | |
| 		, re->re_sa.sa_indigest[4]
 | |
| 	);
 | |
| 	printf("sa: outdigest %x %x %x %x %x\n"
 | |
| 		, re->re_sa.sa_outdigest[0]
 | |
| 		, re->re_sa.sa_outdigest[1]
 | |
| 		, re->re_sa.sa_outdigest[2]
 | |
| 		, re->re_sa.sa_outdigest[3]
 | |
| 		, re->re_sa.sa_outdigest[4]
 | |
| 	);
 | |
| 	printf("sr: iv %x %x %x %x\n"
 | |
| 		, re->re_sastate.sa_saved_iv[0]
 | |
| 		, re->re_sastate.sa_saved_iv[1]
 | |
| 		, re->re_sastate.sa_saved_iv[2]
 | |
| 		, re->re_sastate.sa_saved_iv[3]
 | |
| 	);
 | |
| 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
 | |
| 		, re->re_sastate.sa_saved_hashbc
 | |
| 		, re->re_sastate.sa_saved_indigest[0]
 | |
| 		, re->re_sastate.sa_saved_indigest[1]
 | |
| 		, re->re_sastate.sa_saved_indigest[2]
 | |
| 		, re->re_sastate.sa_saved_indigest[3]
 | |
| 		, re->re_sastate.sa_saved_indigest[4]
 | |
| 	);
 | |
| }
 | |
| 
 | |
| static void
 | |
| safe_dump_ring(struct safe_softc *sc, const char *tag)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&sc->sc_ringmtx, flags);
 | |
| 	printf("\nSafeNet Ring State:\n");
 | |
| 	safe_dump_intrstate(sc, tag);
 | |
| 	safe_dump_dmastatus(sc, tag);
 | |
| 	safe_dump_ringstate(sc, tag);
 | |
| 	if (sc->sc_nqchip) {
 | |
| 		struct safe_ringentry *re = sc->sc_back;
 | |
| 		do {
 | |
| 			safe_dump_request(sc, tag, re);
 | |
| 			if (++re == sc->sc_ringtop)
 | |
| 				re = sc->sc_ring;
 | |
| 		} while (re != sc->sc_front);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
 | |
| }
 | |
| #endif /* SAFE_DEBUG */
 | |
| 
 | |
| 
 | |
| static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct safe_softc *sc = NULL;
 | |
| 	u32 mem_start, mem_len, cmd;
 | |
| 	int i, rc, devinfo;
 | |
| 	dma_addr_t raddr;
 | |
| 	static int num_chips = 0;
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	if (pci_enable_device(dev) < 0)
 | |
| 		return(-ENODEV);
 | |
| 
 | |
| 	if (!dev->irq) {
 | |
| 		printk("safe: found device with no IRQ assigned. check BIOS settings!");
 | |
| 		pci_disable_device(dev);
 | |
| 		return(-ENODEV);
 | |
| 	}
 | |
| 
 | |
| 	if (pci_set_mwi(dev)) {
 | |
| 		printk("safe: pci_set_mwi failed!");
 | |
| 		return(-ENODEV);
 | |
| 	}
 | |
| 
 | |
| 	sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
 | |
| 	if (!sc)
 | |
| 		return(-ENOMEM);
 | |
| 	memset(sc, 0, sizeof(*sc));
 | |
| 
 | |
| 	softc_device_init(sc, "safe", num_chips, safe_methods);
 | |
| 
 | |
| 	sc->sc_irq = -1;
 | |
| 	sc->sc_cid = -1;
 | |
| 	sc->sc_pcidev = dev;
 | |
| 	if (num_chips < SAFE_MAX_CHIPS) {
 | |
| 		safe_chip_idx[device_get_unit(sc->sc_dev)] = sc;
 | |
| 		num_chips++;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sc->sc_pkq);
 | |
| 	spin_lock_init(&sc->sc_pkmtx);
 | |
| 
 | |
| 	pci_set_drvdata(sc->sc_pcidev, sc);
 | |
| 
 | |
| 	/* we read its hardware registers as memory */
 | |
| 	mem_start = pci_resource_start(sc->sc_pcidev, 0);
 | |
| 	mem_len   = pci_resource_len(sc->sc_pcidev, 0);
 | |
| 
 | |
| 	sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len);
 | |
| 	if (!sc->sc_base_addr) {
 | |
| 		device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n",
 | |
| 				mem_start, mem_start + mem_len - 1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* fix up the bus size */
 | |
| 	if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
 | |
| 		device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
 | |
| 		device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(sc->sc_pcidev);
 | |
| 
 | |
| 	pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd);
 | |
| 
 | |
| 	if (!(cmd & PCI_COMMAND_MEMORY)) {
 | |
| 		device_printf(sc->sc_dev, "failed to enable memory mapping\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!(cmd & PCI_COMMAND_MASTER)) {
 | |
| 		device_printf(sc->sc_dev, "failed to enable bus mastering\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc);
 | |
| 	if (rc) {
 | |
| 		device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	sc->sc_irq = dev->irq;
 | |
| 
 | |
| 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
 | |
| 			(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate packet engine descriptors.
 | |
| 	 */
 | |
| 	sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
 | |
| 			SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
 | |
| 			&sc->sc_ringalloc.dma_paddr);
 | |
| 	if (!sc->sc_ringalloc.dma_vaddr) {
 | |
| 		device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hookup the static portion of all our data structures.
 | |
| 	 */
 | |
| 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
 | |
| 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
 | |
| 	sc->sc_front = sc->sc_ring;
 | |
| 	sc->sc_back = sc->sc_ring;
 | |
| 	raddr = sc->sc_ringalloc.dma_paddr;
 | |
| 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
 | |
| 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
 | |
| 		struct safe_ringentry *re = &sc->sc_ring[i];
 | |
| 
 | |
| 		re->re_desc.d_sa = raddr +
 | |
| 			offsetof(struct safe_ringentry, re_sa);
 | |
| 		re->re_sa.sa_staterec = raddr +
 | |
| 			offsetof(struct safe_ringentry, re_sastate);
 | |
| 
 | |
| 		raddr += sizeof (struct safe_ringentry);
 | |
| 	}
 | |
| 	spin_lock_init(&sc->sc_ringmtx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate scatter and gather particle descriptors.
 | |
| 	 */
 | |
| 	sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
 | |
| 			SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
 | |
| 			&sc->sc_spalloc.dma_paddr);
 | |
| 	if (!sc->sc_spalloc.dma_vaddr) {
 | |
| 		device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
 | |
| 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
 | |
| 	sc->sc_spfree = sc->sc_spring;
 | |
| 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
 | |
| 
 | |
| 	sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
 | |
| 			SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
 | |
| 			&sc->sc_dpalloc.dma_paddr);
 | |
| 	if (!sc->sc_dpalloc.dma_vaddr) {
 | |
| 		device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
 | |
| 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
 | |
| 	sc->sc_dpfree = sc->sc_dpring;
 | |
| 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
 | |
| 
 | |
| 	sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
 | |
| 	if (sc->sc_cid < 0) {
 | |
| 		device_printf(sc->sc_dev, "could not get crypto driver id\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	printf("%s:", device_get_nameunit(sc->sc_dev));
 | |
| 
 | |
| 	devinfo = READ_REG(sc, SAFE_DEVINFO);
 | |
| 	if (devinfo & SAFE_DEVINFO_RNG) {
 | |
| 		sc->sc_flags |= SAFE_FLAGS_RNG;
 | |
| 		printf(" rng");
 | |
| 	}
 | |
| 	if (devinfo & SAFE_DEVINFO_PKEY) {
 | |
| 		printf(" key");
 | |
| 		sc->sc_flags |= SAFE_FLAGS_KEY;
 | |
| 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
 | |
| #if 0
 | |
| 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
 | |
| #endif
 | |
| 		init_timer(&sc->sc_pkto);
 | |
| 		sc->sc_pkto.function = safe_kpoll;
 | |
| 		sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev);
 | |
| 	}
 | |
| 	if (devinfo & SAFE_DEVINFO_DES) {
 | |
| 		printf(" des/3des");
 | |
| 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
 | |
| 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
 | |
| 	}
 | |
| 	if (devinfo & SAFE_DEVINFO_AES) {
 | |
| 		printf(" aes");
 | |
| 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
 | |
| 	}
 | |
| 	if (devinfo & SAFE_DEVINFO_MD5) {
 | |
| 		printf(" md5");
 | |
| 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
 | |
| 	}
 | |
| 	if (devinfo & SAFE_DEVINFO_SHA1) {
 | |
| 		printf(" sha1");
 | |
| 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
 | |
| 	}
 | |
| 	printf(" null");
 | |
| 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
 | |
| 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
 | |
| 	/* XXX other supported algorithms */
 | |
| 	printf("\n");
 | |
| 
 | |
| 	safe_reset_board(sc);		/* reset h/w */
 | |
| 	safe_init_board(sc);		/* init h/w */
 | |
| 
 | |
| #if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
 | |
| 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
 | |
| 		safe_rng_init(sc);
 | |
| 		crypto_rregister(sc->sc_cid, safe_read_random, sc);
 | |
| 	}
 | |
| #endif /* SAFE_NO_RNG */
 | |
| 
 | |
| 	return (0);
 | |
| 
 | |
| out:
 | |
| 	if (sc->sc_cid >= 0)
 | |
| 		crypto_unregister_all(sc->sc_cid);
 | |
| 	if (sc->sc_irq != -1)
 | |
| 		free_irq(sc->sc_irq, sc);
 | |
| 	if (sc->sc_ringalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
 | |
| 				sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
 | |
| 	if (sc->sc_spalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
 | |
| 				sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
 | |
| 	if (sc->sc_dpalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
 | |
| 				sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
 | |
| 	kfree(sc);
 | |
| 	return(-ENODEV);
 | |
| }
 | |
| 
 | |
| static void safe_remove(struct pci_dev *dev)
 | |
| {
 | |
| 	struct safe_softc *sc = pci_get_drvdata(dev);
 | |
| 
 | |
| 	DPRINTF(("%s()\n", __FUNCTION__));
 | |
| 
 | |
| 	/* XXX wait/abort active ops */
 | |
| 
 | |
| 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
 | |
| 
 | |
| 	del_timer_sync(&sc->sc_pkto);
 | |
| 
 | |
| 	crypto_unregister_all(sc->sc_cid);
 | |
| 
 | |
| 	safe_cleanchip(sc);
 | |
| 
 | |
| 	if (sc->sc_irq != -1)
 | |
| 		free_irq(sc->sc_irq, sc);
 | |
| 	if (sc->sc_ringalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
 | |
| 				sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
 | |
| 	if (sc->sc_spalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
 | |
| 				sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
 | |
| 	if (sc->sc_dpalloc.dma_vaddr)
 | |
| 		pci_free_consistent(sc->sc_pcidev,
 | |
| 				SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
 | |
| 				sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
 | |
| 	sc->sc_irq = -1;
 | |
| 	sc->sc_ringalloc.dma_vaddr = NULL;
 | |
| 	sc->sc_spalloc.dma_vaddr = NULL;
 | |
| 	sc->sc_dpalloc.dma_vaddr = NULL;
 | |
| }
 | |
| 
 | |
| static struct pci_device_id safe_pci_tbl[] = {
 | |
| 	{ PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, safe_pci_tbl);
 | |
| 
 | |
| static struct pci_driver safe_driver = {
 | |
| 	.name         = "safe",
 | |
| 	.id_table     = safe_pci_tbl,
 | |
| 	.probe        =	safe_probe,
 | |
| 	.remove       = safe_remove,
 | |
| 	/* add PM stuff here one day */
 | |
| };
 | |
| 
 | |
| static int __init safe_init (void)
 | |
| {
 | |
| 	struct safe_softc *sc = NULL;
 | |
| 	int rc;
 | |
| 
 | |
| 	DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init));
 | |
| 
 | |
| 	rc = pci_register_driver(&safe_driver);
 | |
| 	pci_register_driver_compat(&safe_driver, rc);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit safe_exit (void)
 | |
| {
 | |
| 	pci_unregister_driver(&safe_driver);
 | |
| }
 | |
| 
 | |
| module_init(safe_init);
 | |
| module_exit(safe_exit);
 | |
| 
 | |
| MODULE_LICENSE("BSD");
 | |
| MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
 | |
| MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices");
 |