Both devices seem to be completely identical and D-Link doesnt even
mention the DIR-X1550 A1 in the GPL source. Furthermore the supported
devices header also just contains DIR-X1860 B1. The cherry on top is the
FCC filing, which features the manual for DIR-X1550 A1 but the label
info for DIR-X1860 B1. I guess someone at D-Link was just as confused as
me.
Hardware
--------
SOC: MediaTek MT7621AT
FLASH: 128MB (Spansion S34ML01G200TF100)
RAM: 256MB (Winbond W632GU6NB-12)
WIFI: MediaTek MT7915DAN + MT7975DN DBDC 2x2 802.11ax
ETH: 1x WAN, 3x LAN
LED: 6 (4 GPIO controllable, 2 WIFI hardwired)
BTN: WPS, Reset
UART: 115200 8N1 (Pinout silkscreened) - ignore VCC
MAC addresses
-------------
LAN Label MAC (stored in config2 partition as ASCII (entry
factory_mac=xx:xx:xx:xx:xx:xx))
WAN LAN + 3
2.4G LAN + 1
5G LAN + 2
Installation
------------
Vendor UI
---------
1. Browse to http://192.168.0.1 and login.
2. Navigate to "Management" -> "Upgrade".
3. Press the "Select File" button and upload
openwrt-ramips-mt7621-dlink_dir-x1860-b1-squashfs-factory.bin
4. Confirm the security questions, wait for a reboot and enjoy OpenWrt.
Recovery UI
-----------
1. Set your IP address to 192.168.0.101, subnet 255.255.255.0.
2. Power on the device while holding reset.
3. Release reset once the status led starts to blink orange.
4. Open a chrome- or firefox based browser and browse to
https://192.168.0.1
5. Upload openwrt-ramips-mt7621-dlink_dir-x1860-b1-squashfs-recovery.bin
wait for a reboot and enjoy OpenWrt.
Back to stock
-------------
1. Set your IP address to 192.168.0.101, subnet 255.255.255.0.
2. Power on the device while holding reset.
3. Release reset once the status led starts to blink orange.
4. Open a chrome- or firefox based browser and browse to
https://192.168.0.1
5. Upload a decrypted vendor image, wait for a reboot and regret your
decision.
Decrypt vendor image
--------------------
1. Download dlink-sge-image.c and dlink-sge-image.h from the
firmware-utils openwrt repository.
2. Compile a binary from the downloaded file
e.g. gcc dlink-sge-image.c -lcrypto -o dlink-sge-image
3. Run
./dlink-sge-image DIR-X1860-B1 <vendor_image> <decrypted_image> -d
Signed-off-by: Christoph Krapp <achterin@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/20410
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This option will only take effect when the "separate_ramdisk"
feature was enabled. However, this target does not support
this feature. It is an obvious copy and paste issue.
Signed-off-by: Shiji Yang <yangshiji66@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/17832
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The imagebuilder is not intended to build initramfs images. Some
profiles attempt to do this and succeed, due to buildroot leaking
the initramfs-kernel into staging_dir; others attempt it, but fail
due to not having initramfs binaries present in the imagebuilder.
Fix this by adding an explict guard around the unsupported generation
of the initramfs images. This saves space and time during imagebuilder
runs, fixes those that are currently broken and protects against future
breakage for profiles that inadvertently work now.
Fixes: https://github.com/openwrt/openwrt/issues/20151
Signed-off-by: Eric Fahlgren <ericfahlgren@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/20347
Signed-off-by: Robert Marko <robimarko@gmail.com>
This patch adds support for Cudy C200P.
Specifications:
SoC: MediaTek MT7621AT
RAM: 256 MB (DDR3)
Flash: 16 MB (NOR)
POE Chip: IP804AR
Interfaces:
Switch: 1 WAN, 4 LAN (Gigabit)
Gigabit RJ45 PoE Ports on 2~5
Max Power on a Single PoE Ports 30W
PoE Ports : The PoE ports comply with IEEE 802.3at/af standards.
Ports: 1 USB-A 3.0 Ports
LED:
System
PoE Max Status
Link/ACT/PoE Status of Each PoE Port
Physical Buttons:
Reset Button
Power Input:
DC Jack
Power Methods:
DC: 54V 1.11A
802.3at/af PoE
Passive PoE: 24/48V
Max Power Consumption (W):
Total: 60W
PoE: 55W
PoE (when USB Device is plugged in): 50W
No PoE: 5W
Installation:
To install OpenWRT, you need the intermediate firmware from Cudy. (U-boot is locked). After installing the intermediate firmware, you can install OpenWRT via sysupgrade.
Recovery:
TFTP available.
1. Place the recovery.bin in the serving directory of your TFTP server.
2. Set your IP to 192.168.1.88/24.
3. Press the “Reset” button of Cudy router and hold it. Before the Cudy router is powered on and before TFTP start to download the firmware, don't release the “Reset” button.
4. Power on the Cudy router.
5. You can release the reset button only when TFTP starts downloading firmware.
6. When the SYSTEM LED turns solid green, the upgrade is complete.
Serial:
1. Serial connection parameters: 115200 / 8N1
2. Serial connection voltage: 3.3V
PoE is not supported at the time of PR. The IP804R chip is not yet supported by OpenWRT.
Signed-off-by: Marcin Leksmark <lexmark3200@wp.pl>
Link: https://github.com/openwrt/openwrt/pull/20165
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Plasma Cloud PAX1800-Lite is a dual-band Wi-Fi 6 router, based on MediaTek
MT7621A + MT79x5D platform.
Specifications:
- SOC: MT7621AT (880 MHz)
- DRAM: DDR3 448 MiB (Nanya NT5CC256M16DP-DI)
- Flash: 2 MiB SPI NOR (S25FL016K) + 128 MB SPI NAND (W25N02KVZEIR)
- Ethernet: 1x 10/100/1000 Mbps (SOC's built-in switch, with PoE+)
- Wi-Fi: 2x2:2 2.4/5 GHz (MT7905DAN + MT7975DN)
(MT7905DAN doesn't support background DFS scan/BT)
- LED: tri-color LED for status (red, blue, green)
- Buttons: 1x (reset)
- Antenna: 4x internal, non-detachable omnidirectional
- UART: 1x 4-pin (2.54 mm pitch, marked as "3V3 G/RX GND W/TX")
- Power: 12 V DC/2 A (DC jack)
MAC addresses:
WAN: 54:9C:27:xx:xx:00 (factory 0x3fff4, device label)
2.4 GHz: 54:9C:27:xx:xx:02 (factory 0x4, device label +2)
5 GHz: 54:9C:27:xx:xx:08 (factory 0xa, device label +8)
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console (115200 8N1) must be used to access the u-boot shell
during bootup. It can then be used to first boot up the initramfs image
from a TFTP server (here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0x83001000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann (Plasma Cloud) <se@simonwunderlich.de>
Link: https://github.com/openwrt/openwrt/pull/20152
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
RouterBOOT v7 for NOR devices does not support the historic yaffs
"kernel" ELF boot method.
Generate a compatible kernel
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
This is a smart door lock device equipped with OpenWrt 14.07 OEM
modified version Qdwrt
The OEM has closed down, This commit is intended to maximize the
remaining value of these devices. It can flash OpenWrt to become
an AP
Specification:
- SoC: MediaTek MT7628NN
- Flash: 8 MB
- RAM: 64 MB
- Power: DC 5V - 25V
- Ethernet: 1 x RJ45 (10/100 Mbps)
- Wireless radio: 802.11n 2.4g-only
- On-Board LED:
Status 1: GPIO/43 active-low
Status 2: GPIO/44 active-low
Power: AlwaysOn
- Button:
WPS / RESET: GPIO/14 active-low
- Bluetooth: CC2541 via UART1 (ttyS1) and GPIO/26-29
- RFID: MF RC522 on I2C@28
- RTC: DS1339 on I2C@68
- Shell (via CON1 cable)
- LED (Swipe card area):
- Green GPIO/3 active-high
- Red GPIO/11 active-high
- Matrix keypad: (active-low)
GPIO/20 GPIO/21 GPIO/19 (Rows)
GPIO/24 1 2 3
GPIO/25 4 5 6
GPIO/22 7 8 9
GPIO/23 BACK 0 ENTER
(Cols)
- UART: 1 x UART on PCB - 57600 8N1
- GPIO Relay: GPIO/42 active-high
- GPIO Buzzer: GPIO/15 active-high
Warning:
The original firmware does not use the device tree.
This device tree is written based on the content of /sys/devices/platform
and has been tested
Note:
- On the device, matrix keypad rows actually are columns, and the columns actually are rows
- The key code of the CLEAR key of the matrix keypad is BACK in the original firmware.
Issue:
- No drivers in mainline kernel for RFID and Bluetooth.
Flash Instruction:
Using SSH/Telnet:
1. Connect the board to the computer via RJ45 Ethernet
2. Login 10.10.10.1 with root password "szqdingnet123" (SSH Port 22, Telnet Port 9900)
3. Download openwrt firmware on the computer.
4. Setup a http server on computer. And use wget download openwrt firmware from computer
5. Use command "mtd -r write openwrt-ramips-mt76x8-qding_qc202-squashfs-sysupgrade.bin firmware"
to flash
Using U-Boot WebUI:
1. Configure PC with a static IP address 10.10.10.2/24.
2. Open http://10.10.10.1
3. Use "mkqdimg -B qc202 -f openwrt-ramips-mt76x8-qding_qc202-squashfs-sysupgrade.bin" to
make image.
4. Upload factory.bin via U-Boot WebUI.
Original Firmware Dump / More details:
https://blog.gov.cooking/archives/research-qianding-smart-locker-and-flash.html
Original U-Boot firmware image tools:
https://gitlab.com/CoiaPrant/mkqdimg
Signed-off-by: Coia Prant <coiaprant@gmail.com>
Tested-by: Coia Prant <coiaprant@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17471
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
After trying to implement the gluon support for this device I ended up in a boot loop due to the usable amount of flash left. With this patch layout it uses the unused and empty flash space in the original partiton layout.
The version 3 of this device the RE365 share the same approach to have more usable space.
Signed-off-by: Steffen Förster <nemesis@chemnitz.freifunk.net>
Link: https://github.com/openwrt/openwrt/pull/18639
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Move append-teltonika-metadata to image-commands.mk and unify over different targets.
This method can be used to create valid "factory" images for most of Teltonika devices.
Signed-off-by: Simonas Tamošaitis <simsasss@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/19401
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
CREALITY BOX WB01 is small footprint router based on MediaTek MT7688,
is a device intended to interface Creality brand 3D printers to a cloud service.
Specifications:
- SoC: MediaTek MT7688AN @ 580MHz
- RAM: DDR2 128M (Winbond W971GG6SB-25)
- Flash: BoyaMicro BY25Q128AS (16 MiB, SPI NOR) handled by BoHong bh25q128as driver
- WiFi: 2.4GHz 1T1R internal panel antenna
- Ethernet: 1x LAN (10/100)
- USB: 2x USB2.0 port (Genesys Logic GL850G 2 port USB 2.0 hub)
- UART: 3.3V, TX, RX, GND / 56700 8N1 / only pads on PCB
- microSD SD-XC Class 10 slot
- micro USB input (for power only)
- reset button
- FCC ID: 2AXH6CREALITY-BOX
MAC addresses as verified by OEM firmware:
vendor OpenWrt source
LAN eth0 factory 0x2e
2.4GHz phy0-ap0 factory 0x04 (label)
LEDs
color vendor OpenWRT configurable
red SD card activity - yes
green Cloud connectivity status yes
blue LAN activity eth0 yes
yellow WIFI activity phy0tpt yes
Return to OEM & debrick
- download "cxsw_update.tar.bz2" from manufacturer site
- extract archive to FAT32 USB stick root
- put USB stick in USB2 port
- press & hold reset button
- power on device while holding reset
- wait approx 10 sec
- release reset button
Installation with SD Card
- power on device
- wait for device to finish starting
- copy "openwrt-ramips-mt76x8-creality_wb-01-squashfs-cxsw_update.tar.bz2"
to root of FAT32 SD card
- rename openwrt-ramips-mt76x8-creality_wb-01-squashfs-cxsw_update.tar.bz2
to "cxsw_update.tar.bz2"
- put SD card in device
- device will install OpenWRT on internal flash
Installation via telnet:
- extract the "factory.bin" and "install.sh" from newly created
openwrt-ramips-mt76x8-creality_wb-01-squashfs-cxsw_update.tar.bz2
to FAT32 USB stick root
- telnet to 10.10.10.254, user: root, password: cxswprin
- plug the USB in USB1 port
- cd /media/usbdisk/
- sh install.sh
- device will write "factory.bin" to internal flash
Co-authored-by: George Brooke <figgyc@figgyc.uk>
Co-authored-by: Peca Nesovanovic <peca.nesovanovic@sattrakt.com>
Co-authored-by: shivajiva101 <github.com/shivajiva101>
Co-authored-by: Axel Sepulveda <ansepulveda@uc.cl>
Signed-off-by: Axel Sepulveda <ansepulveda@uc.cl>
Link: https://github.com/openwrt/openwrt/pull/19686
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is an industrial 4G router equipped with OpenWrt SNAPSHOT OEM
customized version
WARNING: The original firmware device tree is modified from evb
boards, and the device tree name is evb board. This submitted device
tree is a modified version, which deletes the non-this-device parts
and adds GPIO watchdog.
Specification:
- SoC: MediaTek MT7628NN
- Flash: 16 MB
- RAM: 128 MB
- Power: DC 5V-36V 1.5A
- Ethernet: 1x WAN [slot not install], 1x LAN (10/100 Mbps)
- Wireless radio: 802.11n 2.4g-only [antenna not install]
- LED:
System/Power (RUN): GPIO/37 active-low
Modem: GPIO/3 active-low
RF (Modem Signal): GPIO/2 active-low
- Button:
WPS / RESET: GPIO/11 active-low
- UART: 1x UART on PCB - 115200 8N1
- Serial / COM: 1X RS232/RS485 on board (GPIO/6 hi:RS485 lo:RS232)
- GPIO Watchdog: GPIO/0 mode=toggle timeout=1s
- Modem: 1x Built-in modem on board (Power: GPIO/4 active-high)
- PCIe: 1x miniPCIe for modem [slot not install]
- SIM Slots: 1x SIM Slots
Issue:
- Factory partition not store mac address on original firmware
Flash instruction:
Using SSH/Telnet:
1. Connect the board to the computer via RJ45 Ethernet
2. Login 192.168.8.1 with root password "superzxmn" (SSH Port 22, Telnet Port 5188)
3. Download openwrt firmware on the computer.
4. Use scp or sftp put firmware to board /tmp
5. Use command "mtd -r write openwrt-ramips-mt76x8-hongdian_h7920-v40-squashfs-sysupgrade.bin firmware"
to flash
Original Firmware Dump / More details:
https://blog.gov.cooking/archives/research-hongdian-h7920-v40-and-flash.html
Signed-off-by: Coia Prant <coiaprant@gmail.com>
Tested-by: Coia Prant <coiaprant@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17726
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds support for a dual-band AC1200 wall plug
manufactured by Shenzhen Century Xinyang Tech Co., Ltd.
SoC: Mediatek MT7628AN (MIPS 24KEc single core, 580 MHz)
RAM: 128 MiB DDR2 (Hynix HY5PS1G1631C)
ROM: 8 MiB SPI NOR (Zbit ZB25VQ64ASIG)
Wired: one FE RJ45 port (+ an unpopulated footprint for a 2nd)
WiFi: Mediatek MT7612E
Ant.: four 2 dBi external antennas (two 2.4GHz, two 5 GHz)
LEDs: - Power (green, always on)
- 2.4G (green, controlled by MT7628)
- 5G (green, controlled by MT7612)
- Extender (green, GPIO 37, used as status LED)
- LAN (green/yellow, controlled by RT3050 ESW)
Buttons: WPS and reset (both connected to GPIO 38)
Power: 5V 2-pin JST-XH on main PCB
110/220V AC to 5V 1.5A DC on auxiliary PCB
UART: 57600 8n1 3.3v, holes available on the PCB as J5
pinout is (Gnd) (Tx) (Rx)
MAC: 1C:BF:CE:xx:xx:xx (2.4 GHz, label)
1C:BF:CE:xx:xx:xx + 1 (LAN)
1C:BF:CE:xx:xx:xx + 2 (WAN, not in use)
1C:BF:CE:xx:xx:xx + 3 (5 GHz)
Original firmware is Chaos Calmer 15.05.01 (kernel 3.10.108)
with a few custom packages and a non-LuCI web interface.
Telnet is enabled, requiring an unknown root password [1].
Root password is also needed to access the router via UART console,
but passwordless telnet can be enabled via a trivial web exploit [2]
and then the root password can be removed by editing `/etc/shadow`.
Installation: Upload `sysupgrade` binary via web interface at
`http://192.168.188.1/settings.shtml`. Alternatively, remove
root password and use u-boot menu to flash image via TFTP.
Notes:
- Device model in Chaos Calmer is "mtk-apsoc-demo".
- It is sold under several brands, e.g., Fenvi and Linkavenir.
It is available in two colors: white and black.
- PCB is marked "WD206AD v1.0".
- Instead of a standard ethernet transformer, the PCB has a few tiny
SMD coils.
- The housing is identical to the one used by a 2020 model,
WD-R1203U, which is RTL8812-based. The older model has an FCC
listing with external and internal images: ZNPWD-R1203U.
The FCC listing contains a letter [3] claiming WD-R1203U and
WD-R1208U are internally identical, but evidently they are not.
[1] root:$1$7rmMiPJj$91iv9LWhfkZE/t7aCBdo.0:18388:0:99999:7:::
This is the same hash as in Wodesys WD-R1802U.
There are other root password hashes in `/etc/shadow_sf` and
`/etc/shadow_yn`.
[2] curl -X POST http://192.168.188.1/cgi-bin/adm.cgi \
-d page=Lang -d langType="en;killall telnetd;telnetd -l /bin/sh"
[3] https://fcc.report/FCC-ID/ZNPWD-R1203U/4767033
Signed-off-by: Rani Hod <rani.hod@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/19535
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
SIM SIMAX1800U has the similar hardware design as the SIMAX1800T. The
only difference is the Ethernet portmap.
Specification
-------------
- SoC : Mediatek MT7621
- RAM : 256 MiB DDR3
- Flash : 128 MiB NAND Flash
- WLAN : Mediatek MT7905 DBDC
- 2.4 GHz : 2x2 MIMO WiFi6
- 5 GHz : 2x2 MIMO WiFi6
- Ethernet : MT7621 built-in 10/100/1000 Mbps 1x WAN; 3x LAN
- UART : 3.3V, 115200n8
- Buttons : 1x RESET; 1x WPS/MESH
- LEDs : 1x Multi-Color(Blue;Green;Red)
- Power : DC 12V1A
- CMIIT ID : 2022AP7163
- TFTP IP :
- server : 192.168.1.254
- router : 192.168.1.28
TFTP Installation(recommend)
------------
1. Set local tftp server IP "192.168.1.254" and NetMask "255.255.255.0".
2. Rename initramfs-kernel.bin to "factory.bin" and put it in the root
directory of the tftp server. tftpd64 is a good choice for Windows.
3. Remove all Ethernet cables and WiFi connections from the PC, except
for the one connected to the SIMAX1800U. Start the TFTP server, plug
in the power adapter and wait for the OpenWrt system to boot.
4. Backup "firmware" partition and rename it to "firmware.bin". We need
it to back to the stock firmware.
5. Use "fw_printenv" command to list envs. If "firmware_select=2" is
observed then set u-boot env variable via command:
`fw_setenv firmware_select 1`
6. Apply sysupgrade.bin in OpenWrt LuCI.
Web UI Installation
------------
1. Apply update by uploading initramfs-factory.bin to the web UI.
2. Use "fw_printenv" command to list envs. If "firmware_select=2" is
observed then set u-boot env variable via command:
`fw_setenv firmware_select 1`
3. Apply squashfs-sysupgrade.bin in OpenWrt LuCI.
Return to Stock Firmware
----------------------------
Restore the backup firmware partition in the installation step 4.
MAC addresses
-------------
+---------+-------------------+
| | MAC example |
+---------+-------------------+
| LABEL | 98:xx:xx:xx:xx:b2 |
| LAN | 98:xx:xx:xx:xx:b5 |
| WAN | 98:xx:xx:xx:xx:b2 |
| WLAN2G | 98:xx:xx:xx:xx:b4 |
| WLAN5G | 9a:xx:xx:xx:xx:b4 |
+---------+-------------------+
Tips:
-----------
User can use `TFTP Installation` method to recover a brick device.
Signed-off-by: Shiji Yang <yangshiji66@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/19455
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Fix bootloop on TP-Link EAP615-Wall v1 by reducing LZMA dictionary
size. Before this patch and after an upgrade to kernel 6.12 this
device couldn't boot a kernel because of an error: "lzma compressed:
uncompress error 1".
I have chosen -d22 as dictionary size as suggested by @namiltd.
The usual sizes for problematic devices are -d16, -d20, -d22. I
have confirmed with my tests that this device can boot with a value
up to -d27, but there is no size benefit from values above -d21,
therefore -d22 is good enough.
See also: https://github.com/openwrt/openwrt/issues/19403
Signed-off-by: Marcin FM <marcin@ipv8.pl>
Link: https://github.com/openwrt/openwrt/pull/19433
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The Wavlink Aerial HD3 (WL-WN570HA2) is an AC1200 dual-band outdoor
access point. It supports 802.3AT/AF PoE and is IP67 waterproof.
It is based on the MediaTek MT7628DAN SoC and MT7613BEN WiFi 5 chip.
This model uses the 100Mbit LAN and 2.4Ghz WiFi elements of the
MT7628 and the 5Ghz WiFi of the MT7613.
Specification:
- SoC: MediaTek MT7628DAN (1C/1T) @ 580MHz
- RAM: 64MB DDR2 (integrated in SoC)
- FLASH: 16MB SPI NOR (Fudan FM25Q128A)
- Ethernet: 1x 10/100Mbps
- WiFi: 2.4/5 GHz 2T2R
- 2.4GHz MediaTek MT7628DAN bgn
- 5GHz MediaTek MT7613BEN nac
- Antennas: 2x detachable, dual-band 7dBi with RP-SMA connectors.
- USB: none
- BTN: Reset
- LED: 6 total: power; WAN/LAN; WiFi; WiFi low; WiFi med; Wifi high
- UART: surface-mount on PCB. Pins are marked via silkscreen.
pin1 (square pad, towards Ethernet)=Vcc, pin2=RX,
pin3=TX, pin4=GND. Settings: 57600/8N1.
NOTE: The TX & RX silkscreens were reversed on my test unit.
Installation:
1) This device requires a HTTP recovery procedure to do an initial load
of OpenWRT. You will need:
a. A web browser (private window recommended)
b. Configure an Ethernet interface to 192.168.1.x/24; don't use .1
c. Connect a cable between the computer and the Wavlink's PoE injector.
2) Put the Wavlink in HTTP recovery mode.
a. Do this by pressing and holding the reset button on the bottom while
powering the unit on.
b. As soon as all 6 LEDs light up blue (roughly 2-3 seconds), release
the button.
c. The LEDs should all remain lit, indicating it's in HTTP recovery.
3) Point the browser at http://192.168.1.1/index.html
4) Click "Choose File" and select the OpenWRT sysupgrade image.
5) Click the "Update Firmware" button and wait while the unit flashes
the image and reboots.
6) When the system comes back up fully, only the power LED will be lit.
Wait an extra minute then you should be able to reach OpenWRT on
http://192.168.1.1
5) Log into LuCI as root; there is no password.
Revert to the OEM Firmware:
--------------------------
* U-boot HTTP:
Follow the HTTP recovery steps, and use a firmware image downloaded
from Wavlink.
Signed-off-by: Jonathan Sturges <jsturges@redhat.com>
Link: https://github.com/openwrt/openwrt/pull/18856
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This device is similar to the TP-Link EX220 v1.
The differences are the number of ports (3 LANs
and 1 WAN) and the number of LEDs (1 LED RGB)
Hardware
--------
CPU: MediaTek MT7621 DAT
RAM: 128MB DDR3 (integrated)
FLASH: 16MB SPI-NOR
WiFi: MediaTek MT7905 + MT7975 (2.4 / 5 DBDC) 802.11ax
SERIAL: 115200 8N1
LED - (TX - RX - GND - 3V3 ) - ETH ports
Installation
------------
Flashing is only possible via a serial connection using the sysupgrade
image; the factory image must be signed. You can flash the sysupgrade
image directly through the U-Boot console, or preferably, by booting the
initramfs image and flashing with the sysupgrade command. Follow these
steps for sysupgrade flashing:
1. Establish a UART serial connection.
2. Set up a TFTP server at 192.168.0.2 and copy the initramfs image
there.
3. Power on the device and press any key to interrupt normal boot.
4. Load the initramfs image using tftpboot.
5. Boot with bootm.
6. If you haven't done so already, back up all stock mtd partitions.
7. Copy the sysupgrade image to the router.
8. Flash OpenWrt through either LuCI or the sysupgrade command. Remember
not to attempt saving settings.
Revert to stock firmware
------------------------
Flash stock firmware via OEM web-recovery mode. If you don't have access
to the stock firmware image, you will need to restore the firmware
partition backed up earlier.
Web-Recovery
------------
The router supports an HTTP recovery mode:
1. Turn off the router.
2. Press the reset button and power on the device.
3. When the LED start flashing, release reset and quickly press it
again.
The interface is reachable at 192.168.0.1 and supports installation of
the OEM factory image. Note that flashing OpenWrt this way is not
possible, as mentioned above.
Signed-off-by: Gustavo Curi <gpcuri@land.ufrj.br>
Link: https://github.com/openwrt/openwrt/pull/19104
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
SoC: MediaTek MT7628NN
RAM: 128 MB, EtronTech EM68C16CWQG-25H (DDR2)
Flash: 32MB, Winbond 25Q256JVFQ (Dual Boot, SPI)
Switch: MediaTek MT7628AN, 4 ports 100 Mbps
WiFi: MediaTek MT7603 2T2R/2.4GHz 802.11n
GPIO: 3 buttons (Wi-Fi, Reset, FN), 3 LEDs (Power, Internet, Wi-Fi), 1 port USB 2.0
Disassembly:
At the bottom, under the LEDs, there are 2 screws hidden by rubber feet. After removing the screws, pry the gray plastic part around (it is secured with latches) and remove it.
Serial Interface:
The serial interface can be connected to the 5 pin dots located on the right between the operating mode switch and the antenna.
Pins (from antenna to operating mode switch):
VCC
TX
RX
NC
GND
Settings: 115200, 8N1
Flashing via OEM recovery software:
1. Download the OEM recovery software from the manufacturer's website
2. Download the firmware image (for OpenWRT it is *-squashfs-factory.bin), rename it to KN-1212_recovery.bin
3. Replace the file in the fw folder OEM recovery software with the file from step 2.
4. Run the OEM recovery software and follow the instructions.
Flashing via TFTP:
1. Connect your PC and router to port 1-3, configure PC interface using IP 192.168.1.2, mask 255.255.255.252
2. Serve the firmware image (for OpenWRT it is *-squashfs-factory.bin) renamed to KN-1212_recovery.bin via TFTP
3. Power up the router while pressing Reset button on the back
4. Release Restart button when Power LED starts blinking
To revert back to OEM firmware:
The return to the OEM firmware is carried out by using the methods described above with the help of the appropriate firmware image.
When using OEM bootloader, the firmware image size cannot exceed the size of one OEM «Firmware_x» partition or Kernel + rootFS size.
Signed-off-by: Anton Yu. Ivanusev <ivanusevanton@yandex.ru>
Link: https://github.com/openwrt/openwrt/pull/19157
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
JDCloud RE-SP-01B is a dual-band WiFi 5 router based on the MT7621AT.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 512MB DDR3
- Flash: 32MB SPI NOR
- WiFi: MediaTek MT7603EN (2.4GHz), MediaTek MT7615N (5GHz)
- Ethernet: 1x WAN, 2x LAN (Gigabit Ethernet)
- LEDs: red, blue, green (GPIO controlled)
- Button: Reset (GPIO controlled)
- eMMC: Single onboard (32GB/64GB/128GB)
- USB: 1x USB 2.0 port
MAC Address Structure:
The MAC addresses share the structure DC:D8:7C:XX:XX:XX, where:
- WAN, LAN, and 2.4GHz WiFi: same as the label MAC address.
- 5GHz WiFi: label MAC address + 0x800000.
The manufacturer writes the label MAC address at different
offsets depending on the storage version of the device:
e.g.
128GB version: &config + 0x442a
64GB version: &config + 0x4429
So `get_mac_ascii()` is used here to search for the
base label MAC address of the device.
Ref:
https://github.com/openwrt/openwrt/pull/17409#discussion_r1899674262https://github.com/immortalwrt/immortalwrt/commit/c0c480d
Flash Instruction:
A 3rd party bootloader is required to boot the image. You can
use a SOP16 test clip to burn the image/bootloader to the flash.
The official bootloader does provide a web recovery interface
which only accepts an official image. To access it, you will
need to hold the reset button and power on the device, set your
IP address to 192.168.68.2 and visit http://192.168.68.1.
Co-authored-by: Chukun Pan <amadeus@jmu.edu.cn>
Signed-off-by: Yijie Jin <jinyijie@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/17409
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
SoC: MediaTek MT7628NN
RAM: 128 MB, EtronTech EM68C16CWQG-25H (DDR2)
Flash: 32MB, Winbond 25Q256JVFQ (Dual Boot, SPI)
Switch: MediaTek MT7628AN, 4 ports 100 Mbps
WiFi: MediaTek MT7603 2T2R/2.4GHz 802.11n
GPIO: 2 buttons (Wi-Fi, Reset), 3 LEDs (Power, Internet, Wi-Fi), 1 mode switch
Disassembly:
At the bottom, under the LEDs, there are 2 screws hidden by rubber feet. After removing the screws, pry the gray plastic part around (it is secured with latches) and remove it.
Serial Interface:
The serial interface can be connected to the 5 pin dots located on the right between the operating mode switch and the antenna.
Pins (from antenna to operating mode switch):
VCC
TX
RX
NC
GND
Settings: 115200, 8N1
Flashing via OEM recovery software:
1. Download the OEM recovery software from the manufacturer's website
2. Download the firmware image (for OpenWRT it is *-squashfs-factory.bin), rename it to KN-1112_recovery.bin
3. Replace the file in the fw folder OEM recovery software with the file from step 2.
4. Run the OEM recovery software and follow the instructions.
Flashing via TFTP:
1. Connect your PC and router to port 1-3, configure PC interface using IP 192.168.1.2, mask 255.255.255.252
2. Serve the firmware image (for OpenWRT it is *-squashfs-factory.bin) renamed to KN-1112_recovery.bin via TFTP
3. Power up the router while pressing Reset button on the back
4. Release Restart button when Power LED starts blinking
To revert back to OEM firmware:
The return to the OEM firmware is carried out by using the methods described above with the help of the appropriate firmware image.
When using OEM bootloader, the firmware image size cannot exceed the size of one OEM «Firmware_x» partition or Kernel + rootFS size.
Signed-off-by: Anton Yu. Ivanusev <ivanusevanton@yandex.ru>
Link: https://github.com/openwrt/openwrt/pull/19091
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add uboot-envtools (removing -uboot-envtools) to devices which were
missed in the commit 79bd017 ("ramips: mt7621: add uboot-envtools to
all devices")
- Mi Router 3G
- Mi Router AC2100
While at here remove two redundant entries from devices which were added
just after the referenced commit 79bd017 and did not account for the
new DEFAULT_PACKAGES member:
- SNR-CPE-ME1
- SNR-CPE-ME2-SFP
Fixes: 79bd017 ("ramips: mt7621: add uboot-envtools to all devices")
Fixes: https://github.com/openwrt/openwrt/issues/18960
Signed-off-by: Mario Andrés Pérez <mapb_@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/19012
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The Arcadyan WE410443 is a WiFi AC access point distributed by various ISPs
under various names, including KPN SuperWifi and BT Whole Home Wi-Fi. It
features one ethernet port, dual MT7615N radios and four internal antennas.
Hardware:
- SoC: Mediatek MT7621AT
- Flash: 32 MB
- RAM: 128 MB
- Ethernet: 1x 10/100/1000 Mbps, built into the SoC
- WLAN: 2x MediaTek MT7615N
- Buttons: 1 Reset button, 1 WPS button
- LEDs: 1x Green, 1x Blue, 1x Red, all unmarked
- Power: 12 VDC, 1.5A barrel plug
Installation:
The bootloader is locked with a password, so the image needs to be written
directly to the SPI flash chip. To do this, you need to open up the case,
remove the heatsink and connect the flash chip to a Raspberry Pi. Use the
following connections:
Flash chip --> Raspberry Pi
VCC --> 3v3
RESET --> 3v3
/CS --> GPIO 8
DO --> GPIO 9
CLK --> GPIO 11
DI --> GPIO 10
GND --> Ground
You can solder wires to the flash chip, or use a SOIC16 clip. More details on
the Raspberry Pi and SPI chip pinouts are available on the wiki [1]
When you have the Raspberry Pi connected to the flash chip, boot your Pi and
follow the instructions:
1) Make sure your Pi has SPI enabled with sudo raspi-config
2) Install necessary tools: sudo apt install xxd libubootenv-tool mtd-utils
3) Upload overlay and execute:
sudo dtc -@ -I dts -O dtb -o
/boot/overlays/we410443.dtbo we410443-overlay.dts
4) Enable in /boot/firmware/config.txt by adding a new line containing
dtoverlay=we410443
5) Reboot your Pi and verify the mtd partitions with
cat /proc/mtd, you should see:
dev: size erasesize name
mtd0: 02000000 00001000 "all"
mtd1: 00030000 00001000 "u-boot"
mtd2: 00010000 00001000 "u-boot-env"
mtd3: 00010000 00001000 "factory"
mtd4: 01f60000 00001000 "firmware"
mtd5: 00010000 00001000 "glbcfg"
mtd6: 00010000 00001000 "config"
mtd7: 00010000 00001000 "glbcfg2"
mtd8: 00010000 00001000 "config2"
6) Optionally (but recommended), make a backup:
sudo dd if=/dev/mtd0 of=backup.bin
It can be restored with: sudo flashcp backup.bin /dev/mtd0
7) Set the variables for the bootloader:
echo '/dev/mtd2 0x0 0x1000 0x1000' > fw_env.config
sudo fw_setenv -c fw_env.config bootpartition 0
8) Finally, flash the image:
sudo flashcp openwrt-ramips-mt7621-arcadyan_we410443-
squashfs-sysupgrade.bin /dev/mtd4
MAC addresses
The label address is stored in ASCII in the config partition
Use --> Address
Device --> label
Ethernet --> label
WLAN 2g --> + 1
WLAN 5g --> + 2
References:
[1] https://openwrt.org/toh/arcadyan/astoria/we410443
Signed-off-by: Sander van Deijck <sander@vandeijck.com>
Link: https://github.com/openwrt/openwrt/pull/17981
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
They don't need +x permission.
Fixes: 502916468e ("ramips: add support for ASUS 4G-AX56")
Signed-off-by: Zheng Zhang <everything411@qq.com>
Link: https://github.com/openwrt/openwrt/pull/19034
Signed-off-by: Nick Hainke <vincent@systemli.org>
Instead of including the out-of-tree XR USB serial driver, use the
newly packaged in-tree driver for it.
Link: https://github.com/openwrt/openwrt/pull/18926
Signed-off-by: Robert Marko <robimarko@gmail.com>
Before generating the factory image, check if the input file
exists. Fix the build error when sysupgrade image is too big:
[mkwrgimg] *** error: stat failed on /builder/shared-workdir/build/build_dir/target-mipsel_24kc_musl/linux-ramips_rt288x/tmp/openwrt-ramips-rt288x-airlink101_ar670w-squashfs-factory.bin, No such file or directory
Signed-off-by: Shiji Yang <yangshiji66@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/18836
Signed-off-by: Robert Marko <robimarko@gmail.com>
The web-recovery of the Genexis EX400 validates uploaded images to fit
in the rootf_0 partition.
With OpenWrt, only the kernel is stored in this partition, leaving the
partition very small. Currently, the first factory release image won't
be accepted by the recovery interface after the OpenWrt installation.
Pad the image of the ubifs to 10MB. This allows the 24.10 release image
to be uploaded, enabling device recovery.
Signed-off-by: David Bauer <mail@david-bauer.net>
Clean the temporary directory the UBI image is generated from before
generation.
Currently it is removed after the image generation, which leads to files
possibly not being cleared after a build failure in this step.
Signed-off-by: David Bauer <mail@david-bauer.net>
This is the same hardware as the Cudy WR2100 that's
had support for some time now, just without the WLAN
hardware.
This PR is mostly copied from the commit that added
support for the WR2100, here: 3501db9
Specifications:
SoC: MT7621
CPU: 880 MHz
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 5x Gbit ports
Installation:
There are two known options:
The Luci-based UI.
Press and hold the reset button during power up.
The router will request 'recovery.bin' from a TFTP server at
192.168.1.88.
Both options require a signed firmware binary.
A signed firmware can be found in GitHub PR #18532.
R4 & R5 need to be shorted (0-100Ω) for the UART to work.
Link: https://github.com/openwrt/openwrt/pull/18532
Signed-off-by: David DeGraw <degraw@fastmail.com>
Add the necessary package dependencies as well as device-tree properties
to support the touch-inputs as well as missing LEDs on the Genexis Pulse
EX400 range extender.
Signed-off-by: David Bauer <mail@david-bauer.net>
This sub-target is source only now. We don't need to disable build
for specific devices.
Signed-off-by: Shiji Yang <yangshiji66@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/18745
Signed-off-by: Robert Marko <robimarko@gmail.com>
The factory image generation for the Genexis EX400 image currently fails
if CONFIG_TARGET_ROOTFS_INITRAMFS is disabled.
Create the factory image only if said config option is enabled to avoid
failing builds.
Signed-off-by: David Bauer <mail@david-bauer.net>
Specification:
- MT7620A 580 MHz MIPS24KEc
- 64MB RAM
- 8MB SPI NOR
- MediaTek MT7612E 5.0GHz 802.11a/n/ac
- MediaTek MT7620 2.4GHz 802.11b/g/n
- 5 LEDs (white)
- 1 button
- 1 Gbit port Realtek RTL8211E GbE Phy
Serial Interface:
- 3 Pins GND, RX, TX
- Settings: 57600, 8N1
Based on support from edimax_ew-7476rpc/edimax_ew-747x
and netgear_ex3700/netgear_ex3x00_ex61xx
Notes:
- ATM there is no known way to revert to stock firmware
Flash instruction:
The only known way to flash OpenWrt image is to use tftp in U-Boot, with the
aid of a serial adapter for U-Boot console access:
1. Open the device and connect to the serial port. The device is very similar
to Edimax 7476RPC. See https://openwrt.org/toh/edimax/ew-7476rpc. No VCC!
2. Configure PC with static IP 192.168.1.2/24 and tftp server and
connect PC to device using an ethernet cable.
3. Power on the device and, on the serial console, as soon as U-Boot starts
loading, press "2" to interrupt loading.
4. Enter device ip address 192.168.1.1, PC ip address 192.168.1.2
and the firmware filename placed on the TFTP server.
5. Device will download file from server, write it to flash and reboot.
Signed-off-by: Hugo Monteiro <monteiro.hugo@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16956
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The Xiaomi MiWiFi 3A wireless router has a similar system architecture as the Xiaomi Mi 4A router, which is already officially supported by OpenWrt.
Product website: https://www.mi.com/miwifi3a
Device specification
--------------------
SoC: MT7628AN MIPS_24KEc @ 580 MHz 2.4G-bgn 2x2
WiFi: MT7612EN 5G-an, ac 80 MHz 2T2R
Flash: 16 MB
DRAM: 64 MB
Switch: MT7628AN (integrated in SoC)
Ethernet: 1 x 10 /100 Mbps
USB: None
Antennas: 2 x 2,4 GHz and 2 x 5 GHz (all are external and non-detachable)
LEDs: blue/red/amber
Buttons: Reset
Serial: 115200,8n1
MAC addresses as verified by OEM firmware:
------------------------------------------
use address source
LAN *:DD factory 0x28
WAN *:DD factory 0x28
2g *:DE factory 0x4
5g *:DF factory 0x8004
OEM firmware uses VLAN's to create the network interface for WAN and LAN.
Bootloader info:
----------------
The stock bootloader uses a "Dual ROM Partition System".
OS1 is a deep copy of OS2.
The bootloader starts OS2 by default.
To force start OS1 it is needed to set "flag_try_sys2_failed=1".
How to install:
---------------
1- Use OpenWRTInvasion to gain Telnet, SSH and FTP access: https://github.com/acecilia/OpenWRTInvasion
[IP: 192.168.31.1 | Username: root | Password: root | FTP-Port: 21]
2- Connect to router using telnet or ssh.
3- Backup all partitions. Use command "dd if=/dev/mtd0 of=/tmp/mtd0". Copy /tmp/mtd0 to computer using ftp.
4- Copy openwrt-ramips-mt76x8-xiaomi_miwifi-3a-squashfs-sysupgrade.bin to /tmp in router using ftp.
5- Enable UART access and change start image to OS1.
nvram set uart_en=1
nvram set flag_last_success=1
nvram set boot_wait=on
nvram set flag_try_sys2_failed=1
nvram commit
6- Erase OS1 & OS2 and install OpenWrt
mtd erase OS1
mtd erase OS2
mtd -r write /tmp/openwrt-ramips-mt76x8-xiaomi_miwifi-3a-squashfs-sysupgrade.bin OS1
Credits:
--------
This PR is based on the work of Zehao Zhang (Github: @ZZH-Finalize) that he had published in the PR: #15698
Signed-off-by: Olgun Demir <olgun.demir@mail.com.tr>
Link: https://github.com/openwrt/openwrt/pull/18427
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
SoC: Mediatek MT7621AT (880 MHz MIPS dual-core, quad-thread, CPU)
512 Megabyte DDR3 SDRAM
32 Megabyte NOR Flash
4 Gigabit RJ45 PoE ports
2 MT7615N wifi chips (2.4GHz and 5GHz)
2 USB ports (1xUSB2 and 1xUSB3 - GL3510 chip)
RJ45 RS232 port on front panel (Max3232 chip)
2x mPCIe 2.0 slots for 4G/5G cards
2x SIM slot
1x SDCard Slot
Power via DC12V
4x Cell Antennae
4x Wifi Antennae
MAC Address Locations:
Purpose Ex. Partition Offset
2.4 Ghz *:01 factory 0x4
5 GHz *:02 factory 0x8004
LAN *:03 factory 0xe000
WAN *:04 factory 0xe006
MAC address prefix E4:3A:65 is registered to MofiNetwork Inc
and used as the prefix for all MAC addresses.
Manual: https://mofinetwork.com/files/MoFi_Network_MOFI5500_5GXeLTE_EM7690_SPECS.pdf
WiFi chip specs: https://www.mediatek.com/products/broadband-wifi/mt7615
CPU chip specs: https://www.mediatek.com/products/home-networking/mt7621
Teardown Pictures: https://fccid.io/2AE6X-MOFI5500/Internal-Photos/Internal-Photos-5591739
Installation:
Update Mofi 5500 to at least stock firmware version 4.8.6. (Available on the Mofi website.)
Previous versions are untested in the upgrade process. Log into the LuCI web interface,
usually at 192.168.10.1 and visit the 'System->Backup/Flash Firmware' page.
Upload and flash the firmware as usual.
Note to Maintainers: Do not remove SUPPORTED_DEVICES from the Makefile!
The customized Mofi version of OpenWRT (stock firmware) expects to see mofi5500 as the device
name. The stock firmware does not allow for forcing an installation.
Without this line, users cannot upload the new firmware through the stock Mofi firmware.
This device uses cell modems that could use QMI or MBIM.
Add LuCI Modem Manager to allow people to use these. Also, if they have
two cell network cards, ethernet, USB, or other kinds of networks, they may wish
to use MWAN3 to allow failover amongst their networks.
Please compile it with mwan3 for multiple WAN connections.
Co-authored-by: Mieczyslaw Nalewaj <namiltd@yahoo.com>
Signed-off-by: Rick Mac Gillis <noreply@rickmacgillis.com>
Specification:
SoC: MediaTek MT7628AN
RAM: 128 MB, Zentel A3R1GE40JBF-8E
Flash: 16MB, Winbond W25Q128JV
Switch: rt3050-esw, 2 ports 100 Mbps
WiFi: MediaTek mt7628-wmac 2.4GHz 802.11n and MediaTek MT7663 5GHz
802.11ac (PCIe)
WWAN: Quectel EC200A-EL 4G modem (USB)
GPIO:
* 1 button (Reset/WPS)
* 6 LEDs (Power+WPS, LAN, 3xSignal)
* USB port power controls
* Modem reset
* Modem programming switch
* Internal/external antenna switch for 4G
Serial Interface:
TP10 - 3.3V can be used for level shifter, if needed
TP9 - TX
TP8 - RX
TP11 - GND
Interface properties: 115200, 8N1
Access to console using serial port for OEM firmware:
Username: admin
Password: 1234
Flashing via TFTP (no disassembling or soldering required):
1. Connect your PC and router to port LAN
2. Configure PC interface using static IP 192.168.1.225, mask
255.255.255.0
3. Place OpenWRT firmware image (*-squashfs-tftp-recovery.bin) to TFTP
root folder and renamed it to tp_recovery.bin
4. Unplug power from router
5. Press and hold Reset/WPS button
6. Power up the router
7. Wait until TFTP started uploading image (~10 seconds after power up)
and release Reset/WPS button
8. Wait until image uploaded, i.e. until LAN LED start lighting
9. Enable DHCP address on PC interface and wait for assigning address
10. Use ssh (root@192.168.1.1) to configure router properties
Depends on patch for firmware-utils package:
https://github.com/openwrt/firmware-utils/commit/2051fe5b
Signed-off-by: Sergii Shcherbakov <shchers@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17819
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
SoC: MediaTek MT7628AN
RAM: 128M DDR2, ESMT M14D128168A (2Y)
Flash: 32M, cFeon EN25QH256A (Dual Boot on OEM, concatenated on OpenWrt,
SPI)
Switch: MediaTek MT7628AN, 3 ports 100 Mbps
WiFi: MediaTek MT7628AN 2.4 GHz 802.11n
USB: 1 port USB 2.0
GPIO: 1 button (Wi-Fi & Reset on OEM, Reset on OpenWrt), 3 LEDs (Power,
Internet, Wi-Fi), USB port power controls
Disassembly:
There are 2 screws at the bottom near the LEDs hidden by rubber mounts.
After removing the screws, pry the gray plastic part around (it is secured
with latches) and remove it.
UART Interface:
The UART interface can be connected to the 5 pin located between LAN
ports and the WAN one.
Pins (from the second LAN port to the WAN one): VCC, TX, RX, NC, GND
Settings: 115200, 8N1
Flashing via TFTP:
1. Connect your PC and router to the first LAN port, configure PC
interface using IP 192.168.1.2, mask 255.255.255.0
2. Serve the firmware image (for OpenWrt it is *-squashfs-factory.bin)
renamed to KN-1221_recovery.bin via TFTP
3. Power up the router while pressing Wi-Fi button
4. Release Wi-Fi button when Power LED starts blinking
To revert back to OEM firmware:
The return to the OEM firmware is carried out by using the methods
described above with the help of the appropriate firmware image found on
osvault.keenetic.net.
When using OEM bootloader, the firmware image size cannot exceed the size
of one OEM «Firmware_x» partition or Kernel + rootFS size.
Signed-off-by: Ivan Davydov <lotigara@lotigara.ru>
Link: https://github.com/openwrt/openwrt/pull/18164
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds support for Maginon MC-1200AC.
Hardware specifications:
SoC: MediaTek MT7621
Flash: 16 MB SPI Flash
RAM: 128 MB RAM
Ethernet:
2x 1G RJ45 ports
WLAN:
2.4GHz: MediaTek MT7603E
5GHz: MediaTek MT7613BE
LEDs: Red and blue status lights
Power: 12V DC
UART: 3.3V, 115200 baud, 8N1, like printed on silkscreen (GND,TX,RX,3.3V)
MAC addresses
-------------
+---------+-------------------+
| | MAC example |
+---------+-------------------+
| LAN | 80:3F:5D:xx:xx:72 |
| WAN | 80:3F:5D:xx:xx:73 |
| WLAN 2g | 80:3F:5D:xx:xx:74 |
| WLAN 5g | 80:3F:5D:xx:xx:75 |
+---------+-------------------+
Installation:
The firmware can be flashed via the U-Boot recovery web interface.
To access it, hold the reset button while powering on the device.
U-Boot recovery web interface is then avaiable at 192.168.10.1.
Alternatively, the image can be loaded using the U-Boot serial interface and TFTP.
Signed-off-by: Simon Etzlstorfer <simon@etzi.at>
Link: https://github.com/openwrt/openwrt/pull/17671
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The Zyxel LTE7490-M904 is an 802.3at PoE powered LTE outdoor (IP68) CPE
with integrated directional antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7603E 802.11b/g/n
- Switch: 1 LAN port (1 Gbps)
- LTE/3G/2G: Quectel EG18-EA LTE-A Cat. 18 connected by USB3 to SoC
- SIM: 1 micro-SIM slots under transparent cover
- Buttons: Reset, WLAN under same cover
- LEDs: Multicolour green/red/amber under same cover (visible)
- Power: 802.3at PoE via LAN port
The device is built as an outdoor ethernet to LTE bridge or router.
The wifi interface is intended for installation and/or temporary
management purposes only.
UART Serial:
57600N1, located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
Remove the SIM/button/LED cover and 12 screws holding the back plate
and antenna cover together. Be careful with the cables.
Installation from OEM web GUI:
- Log in as "admin" on OEM web GUI
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image and reboot
For more details about flashing see:
2449a63208 (ramips: mt7621: Add support for ZyXEL NR7101, 2021-04-19)
Main porting work done by Ernesto Castellotti <ernesto@castellotti.net>:
bf1c12f68b (ramips: add support for ZyXEL LTE7490-M904, 2023-12-20)
Signed-off-by: Eric Schäfer <eric@es86.de>
Link: https://github.com/openwrt/openwrt/pull/17485
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>