combined desc of filter

This commit is contained in:
Martin Kennedy 2025-05-05 03:31:09 -04:00
parent 079cee4d4d
commit b21ea4f750

View File

@ -169,7 +169,30 @@ $V_{CC} = \pm \SI{15}{V}$.
\includegraphics[width=0.4\textwidth]{lm741_oclsg}
\end{figure}
\section{Ease of Use}
\section{A Combined Description of the Filter}
Using the more complete model of the op-amp makes analysis more
complex. The following observations simplify the task:
\begin{itemize}
\item $v_p$ remains at ground potential, so the dependent voltage
source has voltage $A(-v_n)$
\item $R_i \to \infty$ is, in effect, an open circuit, so the $R_i$
branch need not be considered
\item $R_o = 0$ is a wire, and $R_o$ can be ignored.
\end{itemize}
The simplified circuit can be depicted as such:
\begin{figure}[h]
\caption{A simplification of the combined model}
\begin{circuitikz}[american voltages]
\draw (0,0) node[left=0cm]{$v_{in}$} to [short, o-] [R, l_=$R_1$, i=$i$] (1.5,0);
\draw (1.5,0) to [C, l_=$\frac{1}{j\omega C_1}$] (2.75,0);
\draw (2.75,0) node [above=0.1cm]{$v_n$} to [short, o-] [R, l_=$R_2$] (5,0);
\draw (5,0) node [above=0.1cm]{$v_{out}$} to [short, o-] [american controlled voltage source, label=$A(-v_n)$] (7,0);
\draw (7,0) node[ground]{};
\end{circuitikz}
\end{figure}
\subsection{Maintaining the Integrity of the Specifications}