\begin{filecontents}[overwrite]{\jobname.bib} } \end{filecontents} \documentclass{article} \usepackage[backend=biber]{biblatex} \addbibresource{\jobname.bib} \usepackage{circuitikz} \usepackage{siunitx} \usepackage[a4paper, total={6in, 8in}]{geometry} \usepackage{amsmath} \usepackage{cancel} \usepackage{graphicx} \usepackage[T1]{fontenc} \usepackage{framed} \usepackage{longtable,booktabs,array} \usepackage{caption} \title{Lab 1} \author{Martin Kennedy} \begin{document} \maketitle \section{Introduction} Unlike DC signals, AC signals are time-varying, posing unique challenges to recording, characterizing and otherwise studying them. In this lab, we will examine the circuit depicted in fig.~\ref{fig:circ}, and focus on comparing the measurement of one aspect of an AC signal -- the RMS voltage -- as seen by two tools: the Digital Multimeter (DMM), and the oscillscope. We will use numerical and analytical methods to model this circuit and derive expected RMS values for comparison. Figure~\ref{fig:circ} depicts the circuit we are studying. \begin{figure}[h] \caption{Our simple circuit} \label{fig:circ} \centering \begin{circuitikz}[american voltages] \draw (0,0) to [sV,l=$V_{in}$] (0,2) to (3,2) to [ R, l_=$R$ ] (3,0) to (0,0) ; \end{circuitikz} \end{figure} \section{Analytic Modeling Results} In the course of our lab procedure, three different types of AC signals are provided at $V_{in}$: \begin{enumerate} \item \label{type:ac} A sinusoidal signal with no DC offset, at two different frequencies and magnitudes \item \label{type:acoffset} The same sinusoidal signals as above, but with a small positive DC offset \item \label{type:squarewave} A square wave voltage, at $25\%$ and $50\%$ duty cycles, with two different AC magnitudes. \end{enumerate} For a signal $x(t)$, we are given the following formula for its RMS voltage: \begin{equation} \label{eq:rms} X_{RMS} = \sqrt{\frac{1}{T}\int{x(t)^{2}dt}} \end{equation} I chose to analyze signal types ~\ref{type:ac} and ~\ref{type:acoffset}, to calculate the RMS AC voltages we expect to see. \subsection{Signal type ~\ref{type:ac}} Signal type ~\ref{type:ac} can be modeled as: \begin{equation} v_{\ref{type:ac}}(t) = V_m\cos{(\omega{t})} \end{equation} (We can arrive here from the general form, $V_m\cos{(\omega{t}+\theta)}$, by shifting the beginning and end of our measurement window by $-\theta$, as the oscilloscope will do when it measures RMS voltages from a peak-to-peak cycle.) Substituting $v_{\ref{type:ac}}$ into equation ~\ref{eq:rms}, the RMS voltage $V_{\ref{type:ac}RMS}$ can be expressed as: \begin{align*} V_{\ref{type:ac}RMS} \ &= \sqrt{\frac{1}{T}\int_{0}^{T}{V_{m}^{2}\cos^{2}{(\omega{t})}dt}} \\ &= V_{m}\sqrt{\frac{1}{T} \int_{0}^{T}{\frac{1}{2} + \frac{\cos{(2\omega{t})}}{2}dt}} \\ &= V_{m}\sqrt{\frac{1}{T} \left[ \frac{t}{2} + \frac{1}{4\omega} \sin{(2\omega t)} \right]_{0}^T} \\ &= V_{m}\sqrt{\frac{1}{T} \left( \frac{T}{2} + \frac{1}{4\omega} \cancel{\sin{(2\omega T)}} - \frac{1}{4\omega} \cancel{\sin{(0)}} \right)} \\ &= V_{m}\sqrt{\frac{1}{\cancel{T}} \frac{\cancel{T}}{2}} \\ &= \frac{V_{m}}{\sqrt{2}}. \end{align*} \subsection{Signal type ~\ref{type:acoffset}} Signal type ~\ref{type:acoffset} can be modeled as: \begin{equation} v_{\ref{type:acoffset}}(t) = V_m\cos{(\omega{t})}+V_{b} \end{equation} Thus, substituting $v_{\ref{type:acoffset}}$ into equation ~\ref{eq:rms}, the RMS voltage $V_{\ref{type:acoffset}RMS}$ can be expressed as: \begin{align*} V_{\ref{type:acoffset}RMS} \ &= \sqrt{\frac{1}{T}\int_{0}^{T}{ \left( V_{m} \cos{(\omega{t})} + V_{b} \right)^{2} dt}} \\ &= \sqrt{\frac{1}{T} \left( V_{m} \right)^{2} \int_{0}^{T}{\cos^{2}{(\omega{t})} + 2 \frac{V_{b}}{V_{m}} \cos{(\omega{t})} + \left( \frac{V_{b}}{V_{m}} \right)^{2} dt}} \\ &= V_{m}\sqrt{\frac{1}{T} \int_{0}^{T}{\frac{1}{2} + \frac{\cos{(2\omega{t})}}{2} + 2 \frac{V_{b}}{V_{m}} \cos{(\omega{t})} + \left( \frac{V_{b}}{V_{m}} \right)^{2} dt}} \\ &= V_{m}\sqrt{\frac{1}{T} \left[ \frac{t}{2} + \frac{1}{4\omega} \sin{(2\omega t)} + \frac{2 V_{b}}{\omega V_{m}} \sin{(\omega t)} + t \left( \frac{V_{b}}{V_{m}} \right)^{2} \right]_{0}^T} \\ &= V_{m}\sqrt{\frac{1}{T} \left( \frac{T}{2} + \frac{1}{4\omega} \cancel{\sin{(2\omega T)}} + \frac{2 V_{b}}{\omega V_{m}} \cancel{\sin{(\omega T)}} + T \left( \frac{V_{b}}{V_{m}} \right)^{2} - \frac{1}{4\omega} \cancel{\sin{(0)}} - \frac{2 V_{b}}{\omega V_{m}} \cancel{\sin{(0)}}\right)} \\ &= V_{m}\sqrt{\frac{1}{\cancel{T}} \left( \cancel{T} \right) \left( \frac{1}{2} + \left( \frac{V_{b}}{V_{m}} \right)^{2} \right)} \\ &= V_{m}\sqrt{\frac{1}{2} + \left( \frac{V_{b}}{V_{m}} \right)^{2}} \\ &= \sqrt{\frac{V_{m}^{2}}{2} + V_{b}^{2}}. \end{align*} \section{Numerical Modeling Results} \section{Experimental Results} \section{Data Comparison} \section{Conclusions} \begin{longtable}[]{@{}lllllllll@{}} \toprule \endhead \bottomrule \endlastfoot Set Mag. & Set Freq. & Read Mag. & Read Period & Calc. Freq. & Calc. RMS & Meas. RMS \\ 2V & 100 Hz & 2.10 V & 9.994 ms & XXXXXHz & .....V & 1.4236 V \\ 2V & 50 kHz & 2.05 V & 19.947 us & a & d & 1.4112 V \\ 5V & 100 Hz & 5.11 V & 10.007 ms & b & e & 3.5522 V \\ 5V & 50 kHz & 5.11 V & 20.005 us & c & f & 3.5451 V \\ \end{longtable} \nocite{*} \printbibliography \end{document}